怎么证明:在△ABC中,P=1/2(a+b+c),r=根号[(P-a)(P-b)(P-c)/p]怎么证明:在△ABC中,P=1/2(a+b+c)r=根号[(P-a)(P-b)(P-c)/p]
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 04:34:27
怎么证明:在△ABC中,P=1/2(a+b+c),r=根号[(P-a)(P-b)(P-c)/p]怎么证明:在△ABC中,P=1/2(a+b+c)r=根号[(P-a)(P-b)(P-c)/p]
怎么证明:在△ABC中,P=1/2(a+b+c),r=根号[(P-a)(P-b)(P-c)/p]
怎么证明:
在△ABC中,P=1/2(a+b+c)
r=根号[(P-a)(P-b)(P-c)/p]
怎么证明:在△ABC中,P=1/2(a+b+c),r=根号[(P-a)(P-b)(P-c)/p]怎么证明:在△ABC中,P=1/2(a+b+c)r=根号[(P-a)(P-b)(P-c)/p]
这个公式又被称做海伦公式.
海伦公式又译希伦公式,传说是古代的叙拉古国王希伦二世发现的公式,利用三角形的三条边长来求取三角形面积.但根据Morris Kline在1908年出版的着作考证,这条公式其实是阿基米德所发现,以托希伦二世的名发表.
假设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:
S=sqrt{s(s-a)(s-b)(s-c)}
而公式里的s:
s=frac{a+b+c}
由于任何n边的多边形都可以分割成n-2个三角形,所以海伦公式可以用作求多边形面积的公式.比如说测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地导出答案.
[编辑]证明
与海伦在他的着作"Metrica"中的原始证明不同,在此我们用三角公式和公式变形来证明.设三角形的三边a、b、c的对角分别为A、B、C,则馀弦定理为
cos(C) = frac{a^2+b^2-c^2}
从而有
sin(C) = sqrt{1-cos^2(C)} = frac{ sqrt{-a^4 -b^4 -c^4 +2a^2b^2 +2b^2c^2 +2c^2a^2} }
因此三角形的面积S为
S = fracab sin(C)
= fracsqrt{-a^4 -b^4 -c^4 +2a^2b^2 +2b^2c^2 +2c^2a^2}
= sqrt{s(s-a)(s-b)(s-c)}
最后的等号部分可用因式分解予以导出.