若函数y=f(x)(x∈D)同时满足以下条件:①它在定义域D上是单调函数②存在区间[a,b]⊊D使得f(x)在[a,b]上的值域也是[a,b],我们将这样的函数称作“A类函数”,函数y=2x-log2x是不是“A类函

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 03:21:20

若函数y=f(x)(x∈D)同时满足以下条件:①它在定义域D上是单调函数②存在区间[a,b]⊊D使得f(x)在[a,b]上的值域也是[a,b],我们将这样的函数称作“A类函数”,函数y=2x-log2x是不是“A类函
若函数y=f(x)(x∈D)同时满足以下条件:①它在定义域D上是单调函数
②存在区间[a,b]⊊D使得f(x)在[a,b]上的值域也是[a,b],我们将这样的函数称作“A类函数”,
函数y=2x-log2x是不是“A类函数”?如果是,试找出[a,b];如果不是,试说明理由;

若函数y=f(x)(x∈D)同时满足以下条件:①它在定义域D上是单调函数②存在区间[a,b]⊊D使得f(x)在[a,b]上的值域也是[a,b],我们将这样的函数称作“A类函数”,函数y=2x-log2x是不是“A类函
我妹也今年高考,也问过类似问题,各位大神都用大学的微积分来教高中生,这个人家接受不了~你就这么理解吧,这道题没让你证明,也就是说考核的重点是函数图象,2x 是增函数,—log2x是减函数,因此复合函数本身就不具备一定的单调性,并且在区间(0,1)上log2x的值域是在(负无穷,0),根据函数图像的性质,在(0,1)区间任意取x1y2,在(1,正无穷)区间任意取x1

求导
f'(x)=2-(log2x)。。。。 log的底数呢?
首先看单调性 我只能说在xxx区间内是单调的。
剩下就好办了,既然是单调函数,那么取值a的时候不是最大值就是最小值,也就是说上边的等式求出单调性就好办了,把a、b带入。
单调递增就是 a=2a-log2或者b=2b-log2b
递减是 a=2b-log2b 。。。。
剩下就是1元...

全部展开

求导
f'(x)=2-(log2x)。。。。 log的底数呢?
首先看单调性 我只能说在xxx区间内是单调的。
剩下就好办了,既然是单调函数,那么取值a的时候不是最大值就是最小值,也就是说上边的等式求出单调性就好办了,把a、b带入。
单调递增就是 a=2a-log2或者b=2b-log2b
递减是 a=2b-log2b 。。。。
剩下就是1元方程护着2元方程了,自己解吧

收起

不是,y对x求导后的导函数为2-1/(xln10),在定义域(0,无穷)上不是单调的,不满足条件1

若函数y=f(x)(x∈D)同时满足以下条件:①它在定义域D上是单调函数②存在区间[a,b]⊊D使得f(x)在[a,b]上的值域也是[a,b],我们将这样的函数称作“A类函数”,函数y=2x-log2x是不是“A类函 对于函数y=f(x),x∈D,若同时满足以下两条件:①f(x)在D上单调;②存在区间[a,b]使f(x)在[a,b]上的值域也是[a,b],则称函数y=f(x)是闭函数.(1)求闭函数y=f(x)=x3符合条件②的区间[a,b](2)若函数y=(x 若函数y=f(x)满足以下条件:①对于任意的x∈R,y∈R,恒有f(x+y)=f(x)f(y);②x∈(0,+∝)时,f(x)∈(1,+∝)(1)求f(0)的值;(2)求证:f(x-y)=f(x)/f(y)(f(y)≠0). 若函数y=f(x)满足以下条件1、对于任意的x∈R,y∈R恒有f(x+y)=f(x)f(y);2、x∈(0,∞)时,f(x)∈(0,∞)(1)求f(0)的值;(2)求证f(x-y)=f(x)/(f(y) (f(y)≠0 对于函数y=f(x)(x∈D),D为此函数的定义域,若同时满足下列两个条件:①f(x)在D内单调对于函数y=f(x)(x∈D),D为此函数的定义域,若同时满足下列两个条件:①f(x)在D内单调递增或单调递减;②存在区间 若非零函数y=f(x)满足以下条件;对于任意的x∈R,y∈R恒有f(x+y)=f(x)f(y);当x>0,f(X)>1(1)求f(0)的值;(2)求证f(X-y)=f(x)/f(y); (3)判断f(X)的单调性 对于定义域为D的函数y=f(x),若同时满足下列条件:(1)f(x)在D内单调递增或单调递减②存在区间[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b];那么把y=f(x)(x∈D)叫闭函数.(3)若y=k+√(x+2)是闭函数 对于定义域为D的函数y=f(x),若同时满足下列条件:(1)f(x)在D内单调递增或单调递减②存在区间[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b];那么把y=f(x)(x∈D)叫闭函数.(1)求闭函数y=-x³符 一道的数学题,呜呜呜呜!对于函数f(x)(x属于D),若,同时满足以下条件:1 f(x)在D上单调递增或单调递减 2 存在区间[a,b]属于D,使f(x)在[a,b]上的值域是[a,b],则把函数f(x)(x属于D)叫做闭函数 (1)求闭 定义在R上的函数f(x)=ax^3+bx^2+cx+3同时满足以下条件1)f(x)在(0,1)上是减函数,在(1,-∞)上是增函数2)f`(x)是偶函数3)f(x)在x=0处的切线与直线y=x+2垂直求:1,函数y=f(x)的解析式2,设g(x)=4lnx-m,若 希望老师讲解已知定义域为〔0,1〕的函数f(x)同时满足以下三个条件:1、对任意的x∈〔0,1〕,总有f(x)≥0 2、f(1)=13、当x≥0 ,y≥0 ,且x+y《1时都有f(x+y)≥f(x)+f(y).(1).试求f(0)的值(2).求f( 对于定义域为[0,1]的函数f(x),如果同时满足以下三条:①对任意的x∈[0,1],总有f(x对于定义域为[0,1]的函数f(x),如果同时满足以下三条:①对任意的x∈[0,1],总有f(x)≥0;②f(1)=1;③若x1≥0,x2≥ 对于定义域为D的函数y=f(x),若同时满足:①f(x)在D内单调递增或单调递减;②存在区间[a,b]∈D,使f(x)在[a,b]上的值域为[a,b],那么把函数y=f(x)(x∈D)叫做“同族函数”. (1)求“同 函数y=f(x)是定义在无限**D上的函数,并且满足对于任意的x∈D,f1(x)=f(x),f2(x)=f(f1(x)),…,fn(x)=f(fn-1(x))(n≥2,n∈N).① 若y=f(x)=(1+x)/(1-3x),则f8(1)=② 试写出满足下面条件的一个函数y=f(x):存在x0 这样.对于函数y=f(x)(x∈D),D为此函数的定义域,若同时满足下列两个条件:①f(x)在D内单调递增或单调递减;②存在区间〖a,b〗上的值域为〖a,b〗,那么我们把y=f(x),x∈D叫闭函数.(1)求 已知函数y=f(x)同时满足以下五个条件:(1)f(x+1)的定义域是[-3,1];(2)f(x)是奇函数;(3)在[-2,0)上,已知函数y=f(x)同时满足以下五个条件:(1)f(x+1)的定义域是[-3,1];(2)f(x)是奇函数;(3)在[-2,0)上,f ’( 设f(x)定义域为D,若满足;(1)f(x)在D内是单调函数,设f(x)定义域为D,若满足;(1)f(x)在D内是单调函数;(2)存在[a,b]是D的子集使f(x)在x∈[a,b]值域为[a.b],则称f(x)为D上的闭函数.证明y=-x³为闭函数, 对于定义域为D的函数y=f(x) ,若同时满足下列条件:① f(x)在D内单调递增或单调递减;②存在区间[ a,b]属于D ,使f(x)在[a,b]上的值域为[a,b];那么把y=f(x)(x属于D)叫闭函数.(1)求闭函数y=-x^3 符