正三角形ABC的边长为4,CD是AB边上高,E,F分别是AC和BC的中点,现将三角形ABC沿CD翻成直二面角A-DC-B问:在线段BC上是否存在P使二面角E-DP-C的余弦值为3√13/13?若存在求出BP的长,不存在请说明理由?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 21:37:28

正三角形ABC的边长为4,CD是AB边上高,E,F分别是AC和BC的中点,现将三角形ABC沿CD翻成直二面角A-DC-B问:在线段BC上是否存在P使二面角E-DP-C的余弦值为3√13/13?若存在求出BP的长,不存在请说明理由?
正三角形ABC的边长为4,CD是AB边上高,E,F分别是AC和BC的中点,现将三角形ABC沿CD翻成直二面角A-DC-B
问:在线段BC上是否存在P使二面角E-DP-C的余弦值为3√13/13?若存在求出BP的长,不存在请说明理由?

正三角形ABC的边长为4,CD是AB边上高,E,F分别是AC和BC的中点,现将三角形ABC沿CD翻成直二面角A-DC-B问:在线段BC上是否存在P使二面角E-DP-C的余弦值为3√13/13?若存在求出BP的长,不存在请说明理由?

 
 
作EH⊥CD垂足H,设存在二面角E-DP-C,作HQ⊥DP,交点为Q,连结EQ,
∵平面ADC⊥平面BDC,
∴EH⊥平面BDC,
根据三垂线定理,EQ⊥DP,
∴<HQE是二面角E-DP-C的平面角,
设<HQE=θ,
∵EH是△CAD的中位线,
∴EH=AD/2=AC/4=1,
cosθ=3√13/13,
secθ=√13/3,
tanθ=√(13/9-1)=2/3,
EH/HQ=tanθ,
∴HQ=1/(2/3)=3/2,
DH=CD/2=2√3/2=√3,
sin<HDQ=HQ/HD=(3/2)/√3=√3/2,
∴<HDQ=60°,
∴<PDB=90°-60°=30°,
∵<B=60°,
∴<DPB=180°-60°-30°=90°,
∴BP=BD/2=1,
∴这样的P点存在,BP=1.DP⊥BC.

ADBDCD两两垂直,以D为原点,建系,空间向量做。

如图所示,正三角形ABC 的边长为4,CD是AB边上的高,E,F分 别是AC和BC边的中点,现将△ABC沿CD 翻折成直二面角A—DC—B.(1)试判断直线AB与平面DEF的位置关 系,并说明理由; (2)求二面角E—DF—C的余弦 正三角形ABC的边长为4,CD是AB边上高,E,F分别是AC和BC的中点,现将三角形ABC沿CD翻成直二面角A-DC-B问:在线段BC上是否存在P使二面角E-DP-C的余弦值为3√13/13?若存在求出BP的长,不存在请说明理由? 正三角形ABC的边长为4,CD是AB边上高,E,F分别是AC和BC的中点,现将三角形ABC沿CD翻成 直二面角A-DC-B在线段BC上是否存在一点P,使AP⊥DE .就差这一题啦~ 在三棱锥P-ABC中,平面PAC⊥平面ABC,∠PCA=90,三角形ABC是边长为4的正三角形,PC=4,M是AB边上的一动点,则PM的最小值为多少? 已知正方形ABCD的边长为a,M,N分别为AD,AB边上的点,且三角形CMN为正三角形,则正三角形CMN的边长是 正三角形abc的边长为a d为ac边上的一个动点 延长ab到e,使be=cd连接de,交bc于点p 求dp=pe 求两异面直线距离△ABC是边长为4根号2的正三角形,SC⊥平面ABC,且SC=2,D,E分别是AB,BC的中点,求异面直线CD和SE的距离 三角形ABC 的面积为12,AB 边上的高是AB 边长的4倍,求AB 的长? 如图,在四边形ABCD中,已知∠C=90°,BC=4,CD=3,AD=根号11,AB=6,则三角形ABCD的面积是?非常急.、还有一道:如图,已知正三角形ABC的边长为a,M为BC边上一点,ME⊥AB于E,MF⊥AC于F。1.如图1,当M为BC 的中点时 三角形abc面积为12,ab边上的高是ab边长的4倍,求ab的长. 正三角形ABC的边长为1,P是AB边上的一点,PQ⊥BC,QR⊥AC,RS⊥AB,(Q,R,S为垂足),若PS=1/4.求AP的长 △ABC是正三角形,D是AB边上一点,以CD为边作△CDE 连接AE 求证AE∥BC AE平行BC11 正三角形ABC边长为a,D为AC边上一动点,延长AB至E,使BE=CD,连接DE交BC于P.求证(1)DP=PE(2)若P为AC中点,求BP长 ABC是边长为1的正三角形,cd⊥平面ABC,且Cd=1,球二面角b-ad-c的大小 等边三角形ABC中 D是AB边上一个动点 以CD为一边 向上作等边三角形EDC 连接AE.若三角形ABC边长为2根号3cm,D为AB中点,求四边形ABCE的面积 在等边三角形abc中d是ab边上一动点以cd为一边向上作等边三角形edc连接ae 若三角形abc的边长为二倍根号三d为ab中点求aecb面积(很急) 在等边三角形abc中d是ab边上一动点以cd为一边向上作等边三角形edc连接ae 若三角形abc的边长为二倍根号三d为ab中点求aecb面积 如图,正三角形abc边长为二,d为ab边上的一点,延长ab至点e,使be等于cd,连结DE,交bc于p.(1)求证:DP=PE(2)当D为AC的中点时,求BP、BE的长.