f(x)=x^2+bx+c,集合a={x|f(x)=x},b={x|f(x-1)=x+1},若集合a={2},求集合b
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 09:58:28
f(x)=x^2+bx+c,集合a={x|f(x)=x},b={x|f(x-1)=x+1},若集合a={2},求集合b
f(x)=x^2+bx+c,集合a={x|f(x)=x},b={x|f(x-1)=x+1},若集合a={2},求集合b
f(x)=x^2+bx+c,集合a={x|f(x)=x},b={x|f(x-1)=x+1},若集合a={2},求集合b
因为a={2}={x|f(x)=x}
所以 方程f(x)=x 也即 x^2+(b-1)x+c=0 有两相同的根x1=x2=2 ;
根据韦达定理:x1+x2=-(b-1)=4 ; x1x2=c=4
b=-3; c=4
所以f(x)=x^2-3x+4
f(x-1)=(x-1)^2-3(x-1)+4=x^2-5x+8
方程f(x-1)=x+1化为:x^2-5x+8=x+1 ,x^2-6x+7=0
解得 x1 =3+√2
x2=3-√2
集合b={3-√2,3+√2 }
f(x)=x^2+bx+c,集合a={x|f(x)=x},b={x|f(x-1)=x+1},若集合a={2},求集合b
设f(x)=x²+bx+c,集合A={x│f(x)=x},B={x│f(x-1)=x+1},若A={2},求集合B
设f(x)=x^+bx+c,集合A={x|f(x)=x},B={x|f(x-1)=x+1},若A={2},求集合B
设f(x)=x2+bx+c,集合A={x|f(x)=x},集合B={x|f(x-1)=(x+1),已知A={2},求B的元素
设f(x)=x2+bx+c,集合A={x|f(x)=x},集合B={x|f(x+1)=(x-1),已知A={2},求B的元素
设函数f(x)=x^x+bx+c,A={x|f(x)=x},B={x|f(x-1)=x+1},若A={2},求集合B
设函数f(x)=x^2+bx+c,A={x|f(x)=x},B={x|f(x-1)=x+1},若A={2},求集合B
设函数f(x)=x^2+bx+c,A={x|f(x)=x},B={x|f(x-1)=x+1},若A={2},求集合B
设函数f(x)=x2+bx+c,A={x/f(x)=x},B={x/f(x-1)=x+1,若A={2},求集合B
已知函数f(x)=ax^2+bx+c(a≠0),a,b,c∈R,集合A={x|f(x)=x},当A={2}时,a:c=
已知函数f(x)=ax²+bx+c(a≠0)a,b,c∈R 集合A={x|f(x)=x},当A={2}时 a:c=____
设f(x)=x^2+bx+c(b,c属于R) A={x|x=f(x)},B={x|x=f(f(x))}证明:若A为只含一个元素集合,则A=B证明1,若A为只含一个元素集合,则A=B 好的话我会追分 题挺难的
已知集合A={x|x^2-2x-3>0},B={x|ax^2+bx+c
f(x)=ax^2+bx+c,f(x)
已知f(x)=ax^2+2bx+c(a
二次函数f(x)=ax^2+bx+c(a
二次函数f(x)=ax^2+bx+c(a
设函数f(x)=ax^2+bx+c (a