已知数列bn=9n+4/2*4n,求数列bn的前n项和

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 09:16:06

已知数列bn=9n+4/2*4n,求数列bn的前n项和
已知数列bn=9n+4/2*4n,求数列bn的前n项和

已知数列bn=9n+4/2*4n,求数列bn的前n项和
把4/2^(4n)化为4/4^(2n)=4^(1-2n),然后9n与4^(1-2n)(错位相减)分别求和再加起来即可

bn = (9n+4)/2^(4n)
= 9[ n.(1/16)^n] + 2^(2-4n)
summation bn
= summation {9[ n.(1/16)^n] + 2^(2-4n)}
=( summation {9[ n.(1/16)^n] } ) + 2^(-2)( 2^(-4n) -1 ) / [2^(-4) -1]
=...

全部展开

bn = (9n+4)/2^(4n)
= 9[ n.(1/16)^n] + 2^(2-4n)
summation bn
= summation {9[ n.(1/16)^n] + 2^(2-4n)}
=( summation {9[ n.(1/16)^n] } ) + 2^(-2)( 2^(-4n) -1 ) / [2^(-4) -1]
= ( summation {9[ n.(1/16)^n] } ) + (4/15)( 2^(-4n) -1 )
consider
1+x+x^2+..+x^n= (x^(n+1)-1)/(x-1)
1+2x+..+nx^(n-1)
= [(x^(n+1)-1)/(x-1)]'
= {nx^(n+1) -(n+1)x^n +1 } /(x-1)^2
multiply both side by x
x+2x^2+..+nx^n = x{nx^(n+1) -(n+1)x^n +1 } /(x-1)^2
put x=1/16
1(1/16)+2(1/16)^2+...n(1/16)^n
= (16/225) [ n (1/16)^(n+1) -(n+1)(1/16)^n+1 ]

summation bn
= ( summation {9[ n.(1/16)^n] } ) + (4/15)( 2^(-4n) -1 )
= (16/25)[ n (1/16)^(n+1) -(n+1)(1/16)^n+1 ] + (4/15)( 2^(-4n) -1 )

收起

已知数列bn=9n+4/2*4n,求数列bn的前n项和 已知数列{bn}满足bn=n^2/3^n,证明:bn≤4/9 数列bn=2^(4n-3),求数列bn的前n项和? 数列bn=2^n(4n-3),求Sn 已知数列{bn}前n项和Sn=3/2n^2-1/2n.数列{an}满足(an)^3=4^-(bn+2)(n ∈N*),数列{cn}=anbn 求数列{cn}已知数列{bn}前n项和Sn=3/2n^2-1/2n.数列{an}满足(an)^3=4^-(bn+2)(n∈N*),数列{cn}=anbn求数列an,bn通项公式和{cn}的 已知bn=4n²-2n,求数列bn的前n项和sn 已知数列an=4n-2和bn=2/4^(n-1),设Cn=an/bn,求数列{Cn}的前n项和Tn 已知数列{an}的通向公式为an=2^n(n-1)/2.若bn=log2an/4^n,求数列{bn}的最小值 已知数列{An}的前N项和Sn=n平方加4n,数列{Bn}满足b1=1,bn+1=2bn+1 求数列An,Bn的通项公式 已知数列{an}的前n项和为Sn=4n^2-2n.n属于N+(1)求an (2)若bn满足an=2(log2)bn,求数列bn的前n项和 已知数列{bn}=n(n+1),求数列{bn的前n项和Sn 已知bn=2n*3^n,求数列{bn}的前n项和 已知数列{an}的前n项和为Sn,且Sn=2n^2+n,n∈N*,数列{bn}满足an=4log2(bn),n∈N*(1)求:数列{an},{bn}的通项公式;(2)求:数列{an乘以bn}的前n项和Tn. 已知数列{an}满足a1=-1,an=[(3n+3)an+4n+6]/n,bn=3^(n-1)/an+2.求数列an的通向公式.设数列bn是的前n项和已知数列{an}满足a1=-1,an=[(3n+3)an+4n+6]/n,bn=3^(n-1)/an+2.(1)求数列an的通向公式.(2)设数列bn是的前n项和为sn, 9.已知数列bn前项和Sn=(3/2)n²-1/2n.数列{an}满足 (1)求数列{an}和数列{bn}的通项公式;9.已知数列bn前项和Sn=(3/2)n²-1/2n.数列{an}满足 (1)求数列{an}和数列{bn}的通项公 已知数列bn=K^(2n-1)+2n,求数列{bn}的前n项和Tn. 数列b(n+1)=bn+ 2^n.求bn. 已知正项数列{bn}的前n项和Bn=(1/4)(bn+1)^2 求{|bn|}通项公式n均是下标.