已知函数f(x)=1+sin2x,g(x)=(√2)sin(x+π/4),x∈[-π/2,π/2](1)求满足f(x)=g(x)的x值的集合(2)求函数f(x)/g(x)的单调递增区间
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 23:31:53
已知函数f(x)=1+sin2x,g(x)=(√2)sin(x+π/4),x∈[-π/2,π/2](1)求满足f(x)=g(x)的x值的集合(2)求函数f(x)/g(x)的单调递增区间
已知函数f(x)=1+sin2x,g(x)=(√2)sin(x+π/4),x∈[-π/2,π/2]
(1)求满足f(x)=g(x)的x值的集合
(2)求函数f(x)/g(x)的单调递增区间
已知函数f(x)=1+sin2x,g(x)=(√2)sin(x+π/4),x∈[-π/2,π/2](1)求满足f(x)=g(x)的x值的集合(2)求函数f(x)/g(x)的单调递增区间
(1)f(x)=1+sin2x=1+2sinxcosx g(x)=(√2)sin(x+π/4)=sinx+cosx
1+2sinxcosx=sinx+cosx
(sinx+cosx)^2=sinx+cosx
sinx+cosx=1或sinx+cox=0
(√2)sin(x+π/4)=0或1
因为x∈[-π/2,π/2]
所以x=-π/4或0或π/2
(2)f(x)/g(x)=[(sinx+cosx)^2]/sinx+cosx=sinx+cosx=(√2)sin(x+π/4)
令-π/2+2kπ≤x+π/4≤π/2+2kπ
-3π/4+2kπ≤x≤π/4+2kπ,k∈Z
因为x∈[-π/2,π/2]
所以单调递增区间为[-π/2,π/4]
楼上的 你没注意x∈[-π/2,π/2]阿
1、
f(x)=g(x)
1+sin2x=(√2)sin(x+π/4),
sin²x+cos²x+2sinxcosx=√2(sinxcosπ/4+cosxsinπ/4)
(sinx+cosx)²=√2(sinx*√2/2+cosx*√2/2)=sinx+cosx
所以(sinx+cosx)²-(sinx+cosx)=0...
全部展开
1、
f(x)=g(x)
1+sin2x=(√2)sin(x+π/4),
sin²x+cos²x+2sinxcosx=√2(sinxcosπ/4+cosxsinπ/4)
(sinx+cosx)²=√2(sinx*√2/2+cosx*√2/2)=sinx+cosx
所以(sinx+cosx)²-(sinx+cosx)=0
所以sinx+cosx=0或sinx+cosx=1
sinx+cosx=√2sin(x+π/4)
若√2sin(x+π/4)=0,sin(x+π/4)=0,x+π/4=kπ,x=kπ-π/4
若√2sin(x+π/4)=1,sin(x+π/4)=√2/2,x+π/4=2kπ+π/4或=2kπ+3π/4
则x=2kπ或x=2kπ+π/2
综上
x属于{x|x=kπ-π/4,x=2kπ,x=2kπ+π/2,k是整数}
2、
f(x)=1-cos(π/2+2x)
=1-cos[2(π/4+x)]
=1-[1-2sin²(π/4+x)]
=2sin²(π/4+x)
所以f(x)/g(x)=(√2)sin(x+π/4)
sinx的增区间是(2kπ-π/2,2kπ+π/2)
所以2kπ-π/2
收起
d
f(x)=(sinx+cosx)^2,g(x)=sinx+cosx.看出了这点,问题就很简单了,自己会算吧?