直线L交椭圆x2/a2+y2/b2=1,[a>b>0]与AB两点,求△AOB的面积的最大值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 04:40:21
直线L交椭圆x2/a2+y2/b2=1,[a>b>0]与AB两点,求△AOB的面积的最大值
直线L交椭圆x2/a2+y2/b2=1,[a>b>0]与AB两点,求△AOB的面积的最大值
直线L交椭圆x2/a2+y2/b2=1,[a>b>0]与AB两点,求△AOB的面积的最大值
作图,可发现当交点AB分别为(a,0)(0,b)时面积最大
且此时S△AOB=1/2 *a*b
=ab/2
此时直线L方程为 y=(-b/a)x+b
直线L交椭圆x2/a2+y2/b2=1,[a>b>0]与AB两点,求△AOB的面积的最大值
过椭圆C:x2/a2+y2/b2=1外一点A(m,0)作一直线l交椭圆于P,Q两点过椭圆C:x2/a2+y2/b2=1(a>b>0)外一点A(m,0)作一直线l交椭圆于P,Q两点,Q关于x轴的对称点为Q1,连结PQ1交x轴于点B(1)若AP(向量)=λA
已知0为坐标原点,过椭圆x2/a2+y2/b2=1(a>b>0)的右焦点F作直线l与椭圆交于A、B,且角A0B恒为钝角,求离心...已知0为坐标原点,过椭圆x2/a2+y2/b2=1(a>b>0)的右焦点F作直线l与椭圆交于A、B,且角A0B恒为钝角,
已知椭圆C:x2 /a2 + y2 /b2 =1(a>b>0)的焦距为4,且与椭圆x2+ y2 2 =1有相同的离心率已知椭圆C:x2/ a2 + y2 /b2 =1(a>b>0)有相同的离心率,斜率为k的直线l经过点M(0,1),与椭圆C交于不同两点A、
高二高三题(关于椭圆与双曲线)急!已知椭圆C的方程为x2/a2 +y2/b2=1 (a>b>0) 双曲线x2/a2 -y2/b2=1 的两条渐进线 为L1.L2 过椭圆C的右焦点F的直线L垂至于L1,又L与L2交于P点,设L与椭圆C的两个交点由上
已知椭圆x2/a2+y2/b2=1(a>b>0)的离心率为√3/2,右焦点到直线x+y+√6=0已知椭圆x2/a2+y2/b2=1(a>b>0)的离心率为√3/2,右焦点到直线x+y+√6=0的距离为2√3.求椭圆的方程;过点M(0,-1)作直线l 交椭圆于A
已知椭圆x2/a2+y2/b2=1的离心率为根号3/2 且过点(根号3 1/2) (1)求椭圆的方程已知椭圆x2/a2+y2/b2=1(a>b>0)的离心率为根号3/2 且过点(根号3,1/2) (1)求椭圆的方程.(2)设直线l:y=kx+m(k≠0,m>)与椭圆交
已知椭圆M:x2/a2+y2/b2=1(a>b>0)圆F:(x+c)2+y2=(a-c)2,c为椭圆的半焦距.过点p(a-2a2/c,0)作直线L与椭圆M交于A,C两点,当直线L与圆F切与x轴上方一点B时,直线L的斜率为 根号15/15(1)求椭圆的离
已知椭圆x2/a2+y2/b2=1(a>b>0)的左焦点为F(-根号2,0),点F到右顶点的距离为根号3+根号2,(一)求椭圆的方程(二)设直线l与椭圆交于AB两点,且与圆x2+y2=3/4相切,求三角形AOB面积的最大值
已知椭圆x2/a2+y2/b2=1(a>b>0)的左焦点为F(-根号2,0),点F到右顶点的距离为根号3+根号2,(一)求椭圆的方程(二)设直线l与椭圆交于AB两点,且与圆x2+y2=3/4相切,求三角形AOB面积的最大值
已知椭圆x2/a2+y2/b2=1(a>b>0)的离心率e=根号3/2,连接椭圆的四个顶点,得到菱形面积为4.①求椭圆的方程如.②.沿直线l的椭圆交于不同的两点A,B已知A(-a,0),且|AB|=4根号2/5,求直线l的方程
已知直线l:y=2x+m(m>0)与圆O:x2+y2=4相切,且过椭圆:(y2/a2)+(x2/b2)=1(a>b>0)的两个顶点.求椭圆方程.
高中椭圆与直线题,求详解……已知椭圆x2/a2+y2/b2=1(a>b>0)的右焦点为F(1,0),M为椭圆上顶点,O为坐标原点,且△OMF是等腰直角三角形(1)求椭圆方程;(2)是否存在直线l交椭圆于P、Q两点,且使F
椭圆C:x2/a2+y2/b2=1(a>b>0)的左右焦点为f1、f2,点p在椭圆上,且pf1垂直pf2,|pf1|=4/3,|pf2|=14/3.求(1)椭圆C的方程.(2)若直线l过圆x2+y2+4x-2y=0的圆心M,交椭圆C于A、B两点,且A、B关于点M对称,求直线l的方程.
椭圆x2/a2+y2/b2=1(a>b>0)的两个焦点F1,F2.点P在椭圆C上,且PF1垂直F1F2,PF=4/3,PF2=14/31)求椭圆方程 2)若直线l过圆x2+y2+4x-2y=0的圆心M交椭圆A,B两点,且A,B关于点M对称,求直线l的方程.
已知过点(1,0)的直线L与椭圆x2/a2+y2/b2=1(a>b>0且a2+b2>1)相交于P,Q两点,PQ的中点坐标为(a2/2,b2/2)且向量OP⊥向量OQ(O为坐标原点)⑴求直线L的方程⑵求证:1/a2+1/b2为定值
已知椭圆C;x2/a2+y2/b2=1(a>b>0)的右焦点为F(1,0),且点(-1,根号2/2)在椭圆上,已知点Q(四分之五,0),动直线l过点F,且l与椭圆交于A,B两点,证明QA向量乘QB向量为定值.
过椭圆x2/a2+y2/b2=1(a>b>0)的左焦点作直线AB垂直于x轴,交椭圆于A,B两点.若角AOB=90°,求椭圆的离心率.