设{an}是等差数列,an=2n-1,{bn}是等比数列,bn=2^(n-1)求{an/bn}前n项和Sn

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 04:30:24

设{an}是等差数列,an=2n-1,{bn}是等比数列,bn=2^(n-1)求{an/bn}前n项和Sn
设{an}是等差数列,an=2n-1,{bn}是等比数列,bn=2^(n-1)求{an/bn}前n项和Sn

设{an}是等差数列,an=2n-1,{bn}是等比数列,bn=2^(n-1)求{an/bn}前n项和Sn
s(n)=(2*1-1)/1 + (2*2-1)/2 + (2*3-1)/2^2 + ...+ [2(n-1)-1]/2^(n-2) + (2n-1)/2^(n-1)
2s(n)=2(2*1-1)/1 + (2*2-1)/1 + (2*3-1)/2 + ...+ [2(n-1)-1]/2^(n-3) + (2n-1)/2^(n-2),
s(n)=2s(n)-s(n)=2(2*1-1)/1 + (2*1)/1 + (2*1)/2 + ...+ [2*1]/2^(n-2) - (2n-1)/2^(n-1)
=2 + 2[1+1/2+...+1/2^(n-2)] - (2n-1)/2^(n-1)
=2+4[1-1/2^(n-1)] - (2n-1)/2^(n-1)
=6 - (2n+3)/2^(n-1)

设数列{an}满足an=2an-1+n 若{an}是等差数列,求{an}通项公式 已知数列an,an属于n*,sn=1/8*(an+2)^2,{an}是等差数列 a1=1,an+1=2an+2^n 设bn=an/2^n-1 1证明bn是等差数列 2求an前n项和sna1=1,an+1=2an+2^n 设bn=an/2^n-1 1.证明bn是等差数列 2.求an前n项和sn 设{an}是等差数列,an=2n-1,{bn}是等比数列,bn=2^(n-1)求{an/bn}前n项和Sn 一道求证等差数列题目,a1=1 ,an=2a(n-1)+ 2^(n-1) 设bn= an/2^(n-1) 求证bn是等差数列 求证等差数列,a1=1 ,an=2a(n-1)+ 2^(n-1) 设bn= an/2^(n-1) 求证bn是等差数列 设等差数列满足an=2an-1+n(n=2,3,.).求通项公式设等差数列满足an=2an-1+n(n=2,3,.)(1)若an是等差数列,求an的通项公式(2)an是否可能为等比数列?若可能,求出此数列通项公式,若不可能,说明理由.过 设数列{an}的前n项和Sn=2an-2n(1)证明数列{an+1-2an}是等差数列(2)证明数列{an+2}是等比数列(3)求{an}的通项公式 在数列an中a1=3 an+1=3an+3^n+1(1)设bn=an/3^n 证明:数列{bn}是等差数列在数列an中a1=3 an+1=3an+3^n+1(1)设bn=an/3^n 证明:数列{bn}是等差数列(2)求数列{an}的前n项和Sn.看有的答案上写滴.“an+1=3an+3^n+1 数列{an}满足a(n+1)+an=4n-3,若{an}是等差数列,(1)求{an}的通项公式(2)设Sn是{an}的前n项和,数列{an}满足a(n+1)+an=4n-3,若{an}是等差数列,(1)求{an}的通项公式(2)设Sn是{an}的前n项和,且a1=1,求S(2n+1) 数列{an}中,a1=1,an+1=2an+2^n(1)设bn=an/2^n-1.证明数列{bn}是等差数列(2)求数列{an}的前n项和sn 在正等比数列an中,a1=1,an+1=2an+2^n,设bn=an/2^n-1证明bn是等差数列2求数列an的前n项和 数列an中,a1=1,an+1=2an+2的n次方,设bn=an/2∧n-1,证明bn是等差数列,求数列an的前n项和sn 在数列an中,a1=1,an+1 2an+2的n次方1.设bn=an/2的n-1次方,证明:数列bn是等差数列2求数列an的前n项和Sn 在数列an中a1=3 an+1=3an+3^n+1(1)设bn=an/3^n 证明:数列{bn}是等差数列(2)求数列{an}的前n项和Sn. 在数列an中,a1=2,a2=4,an+1=3an-2an-1,设bn=log2(an+1-an)求证bn是等差数列,求数列1/bnbn+1的前n项和 如何证明:已知数列{an}是等差数列,设bn=2an+3a(n+1).求证:数列{bn}也是等差数列. {an}是等差数列,Sn=n2-2n,求:an