y=[sin(x^4)]^2,则dy/d(x^2)=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 23:06:33

y=[sin(x^4)]^2,则dy/d(x^2)=
y=[sin(x^4)]^2,则dy/d(x^2)=

y=[sin(x^4)]^2,则dy/d(x^2)=
要是对dy/d(x^2)这形式不习惯,可以令t=x^2,那么函数y=[sin(x^4)]^2就变为:y=[sin(t^2)]^2
同时求dy/d(x^2)也就是相当于求:dy/dt了,根据复合函数的求导法则很容易就得出:
dy/dt=2[sin(t^2)][cos(t^2)][2t]
=4tsin(2t^2)
将t=x^2代人就得到所求:dy/d(x^2)=4x^2sin(2x^4)
值得注意的一点是:dy/d(x^2)并不是求关于内含x^2的复合函数求导你,而只需把x^2看成一个变量就行了.
觉得这对你有用的话不妨顶顶