计算曲面积分I=∫∫∑xydydz+2sinxdxdy,其中∑是旋转抛物面z=x²+y²(0≤z≤1)的下侧求教
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 12:18:48
计算曲面积分I=∫∫∑xydydz+2sinxdxdy,其中∑是旋转抛物面z=x²+y²(0≤z≤1)的下侧求教
计算曲面积分I=∫∫∑xydydz+2sinxdxdy,其中∑是旋转抛物面z=x²+y²(0≤z≤1)的下侧
求教
计算曲面积分I=∫∫∑xydydz+2sinxdxdy,其中∑是旋转抛物面z=x²+y²(0≤z≤1)的下侧求教
补一个面,用高斯定理
=4∫∫y*根号下(z-y²)dydz 二重积分域有z=y²及z=1围成 (在第一象限)
=8/15
计算曲面积分I=∫∫∑xydydz+2sinxdxdy,其中∑是旋转抛物面z=x²+y²(0≤z≤1)的下侧求教
求一个第二类曲面积分的解答∫∫xydydz+yzdzdx+xzdxdy,其中S是坐标平面和x+y+z=1 所为四面体表面的外侧?s是封闭的
计算曲面积分 I=∫∫(S+) (x^3)dydz+(z)dzdx+(y)dxdy 其中s+为曲面x^2+y^2=4,与平面z=0,Z=1所围外侧
计算曲面积分I=∫∫D(x+|y|)dS,其中曲面D:|x|+|y|+|z|=1
计算∫∫xydydz+z^2dzdx+y^2dxdy其中∑为半球面z=√(4-x^2-y^2)的上侧
利用高斯公式求解第二类曲面积分的题目被积项是(2xydydz+yzdzdx-z^2dxdy),S是由锥面z=(x^2+y^2)的二分之一次方 与半球面z=(2-x^2-y^2)的二分之一次方 所围成的区域边界曲面的外侧.
利用高斯公式求解第二类曲面积分的题目,被积项是(2xydydz+yzdzdx-z^2dxdy),S是由锥面z=(x^2+y^2)的二分之一次方 与半球面z=(2-x^2-y^2)的二分之一次方 所围成的区域边界曲面的外侧.
曲面积分zxdxdy+xydydz+yzdzdxξ是坐标轴和x+y+z=1所围成的区域外围
计算曲面积分∫∫1/(x^2+y^2+z^2)ds,其中S是介于平面z=0及z=H之间的圆柱面x^2+y^2=R^2.(第一类曲面积分计
计算第一型曲面积分∫ ∫(s)x^2y^2ds s为上半球面z=根号(R^2-x^-y^2)
计算第二型曲面积分∫∫xdydz+ydzdx+zdxdy,其中S是曲面|x|+|y|+|z|=1的外侧.
计算曲面积分I=如图,其中∑为曲面Z=-√(a^2-x^2-y^2) (a>0)的上侧
高数高斯公式的题目∫∫xydydz+xdzdx+x*xdxdy 积分下标Σ为z=根号(4-x*x-y*y)Σ用高斯公式求解积分下标Σ为z=根号(4-x*x-y*y)的曲面上半部分
计算曲面积分I=∫∫(xdydz+ydzdx+zdxdy)/(x+y+z),其中积分曲面是2x+2y+2z=4的外侧,高数下的曲面积分,我用高斯算出来是0答案是4pi,为什么啊,
计算曲面积分∫∫(x^2)dS,其中S为上球面z=根号(1-x^2-y^2),x^2+y^2
曲面积分计算问题(高斯定理的利用)计算曲面面积I = ∫∫2x^3dydz+2y^3dzdx+3(z^2-1)dxdy∑其中∑是曲面z=1-x^2-y^2(z>=0)的上侧 我想知道第一次运用高斯定理之后的三重积分如何作!仰望的思路正确
计算曲面积分闭合曲面I=ff(x^2+y^2)dS.其中曲面为球面x^2+y^2+z^2=2(x+y+z)
计算曲面积分闭合曲面I=ff(x^2+y^2)dS.其中曲面为球面x^2+y^2+z^2=2(x+y+z)