∑为上半球面z=√(1-x^2-y^2)的上侧,则对坐标的曲面积分∫∫y^3dxdy=?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 06:32:00
∑为上半球面z=√(1-x^2-y^2)的上侧,则对坐标的曲面积分∫∫y^3dxdy=?
∑为上半球面z=√(1-x^2-y^2)的上侧,则对坐标的曲面积分∫∫y^3dxdy=?
∑为上半球面z=√(1-x^2-y^2)的上侧,则对坐标的曲面积分∫∫y^3dxdy=?
你确定题没错吗?
“数学之美”团队为你解答,如果解决问题请采纳.
∑为上半球面z=√(1-x^2-y^2)的上侧,则对坐标的曲面积分∫∫y^3dxdy=?
∫∫z^2ds,其中∑是上半球面z=√1-x^2-y^2被平面z=1/2截取的顶部
设∑为上半球面x^2+y^2+z^2=1(z>=0)则对面积的曲面积分∫∫ds=?
求∫∫√(R^2-x^2-y^2)dS ∑为上半球面z=√(R^2-x^2-y^2)
∑为上半球面z=√(1-x^2-y^2)的上侧,则对坐标的曲面积分∫∫y^3dxdy=?求详细过程
计算(二重积分)xy^2dydz+yz^2dzdx+zx^2dxdy 范围为上半球面z=根号1-x^2-y^2的上侧
求对面积的曲面积分∫∫zds,其中∑为球面x^2+y^2+z^2=R^2设∑1表示上半球面:z1=√(R^2-x^2-y^2),∑2表示下半球面z2= —√(R^2-x^2-y^2)
球面的三重积分设M由上半球面x^2+y^2+z^2=a^2与平面z=0围成,则x^2+y^2+z^2在区域M上的三重积分为多少
计算∫∫yzdzdx+2dxdy,其中∑是上半球面z=√(4-x^2-y^2)的上侧
【曲面积分问题】求曲面积分fffΣ(x+y+z)dS,其中Σ为上半球面z=根号(a^2-x^2-y^2)求曲面积分fff(x+y+z)dS,其中Σ为上半球面z=根号(a^2-x^2-y^2)Σ
曲面积分∫∫(a^2+x^2+y^2)^0.5 dS 范围为球面x^2+y^2+z^2=a^2的上半部分
计算第一型曲面积分∫ ∫(s)x^2y^2ds s为上半球面z=根号(R^2-x^-y^2)
∫∫s(x+y+z)ds,其中s为上半球面z=√a^2-x^2-y^2详细点,这是一个一类曲面积分的题.
∑为上半球面z=√4-x^2-y^2,则曲面积分∫zds=16π,怎么我算的就是8π,是我算错了?若是16请给详细答案,
计算曲面积分 ∫∫(x^2+y^2)ds,其中 ∑是上半球面z=根号(4-x^2-y^2)
计算曲面积分∫∫x^3dydz+y^3dzdx+z^3dxdy,∑是上半球面z=根下1-x^2-y^2的上侧
求I=∫∫ xz^2dydz+(y*x^2-z^3)dzdx+(2xy+z*y^2)dxdy /x^2+y^2+z^2,积分曲面为上半球面Z=√a^2-x^2-y^2答案是2πa^3/5,求过程
求I=∫∫ xz^2dydz+(y*x^2-z^3)dzdx+(2xy+z*y^2)dxdy /x^2+y^2+z^2,积分曲面为上半球面Z=√a^2-x^2-y^2答案是2πa^3/5