求详解如图,在直径为1的圆O中,作一关于圆心对称、邻边互相垂直的十字形,其中Y>X>0.(1)将十字形的面积表示为θ的函数(2)θ为何值时十字形的面积最大?最大面积是多少
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 10:55:57
求详解如图,在直径为1的圆O中,作一关于圆心对称、邻边互相垂直的十字形,其中Y>X>0.(1)将十字形的面积表示为θ的函数(2)θ为何值时十字形的面积最大?最大面积是多少
求详解
如图,在直径为1的圆O中,作一关于圆心对称、邻边互相垂直的十字形,其中Y>X>0.(1)将十字形的面积表示为θ的函数(2)θ为何值时十字形的面积最大?最大面积是多少
求详解如图,在直径为1的圆O中,作一关于圆心对称、邻边互相垂直的十字形,其中Y>X>0.(1)将十字形的面积表示为θ的函数(2)θ为何值时十字形的面积最大?最大面积是多少
已知直径为1,故x=cosθ,y=sinθ,则:
(1).十字形的面积S=y²-4[(y-x)/2]²
=sin²θ-(sinθ-cosθ)²
=sin²θ-(1-2sinθcosθ)
=sin²θ-(1-sin2θ)
=(1-cos2θ)/2-1+sin2θ
=sin2θ-1/2cos2θ-1/2
=√[1²+(1/2)²]sin[2θ-aretan(1/2)]-1/2
=√5/2sin[2θ-aretan(1/2)]-1/2.
(2).当θ=[90°-aretan(1/2)]/2时,面积最大;
最大面积Smax=(√5-1)/2 (此值恰为黄金分割率).
(1)设十字形的面积为S,由图可知:
x=cosθ (0<θ<90°)
y=sinθ
S=y^2-4((y-x)/2)^2=x^2-2xy=-(cosθ)^2+2cosθsinθ
=-(cosθ)^2+sin2θ
(2)对S求导得
S'=-sin2θ-2cos2θ ...
全部展开
(1)设十字形的面积为S,由图可知:
x=cosθ (0<θ<90°)
y=sinθ
S=y^2-4((y-x)/2)^2=x^2-2xy=-(cosθ)^2+2cosθsinθ
=-(cosθ)^2+sin2θ
(2)对S求导得
S'=-sin2θ-2cos2θ 当S'=0时取得最大值 即tan2θ=2
θ=1/2artan2
代入S中,最大面积=(3√5-5)/10
收起
s=2xy-x^2 =2*2cosθ*2sinθ-(2cosθ)^2 =4sin2θ-2(cos2θ+1) =2*5^(1/2)(sin2θsina-cos2θcosa)-2(其中sina=2/5^(1/2),cosa=1/5^(1/2)) =-2*5^(1/2)cos(2θ+a)-2 <=2√5-2 十字形的最大面积为2√5-2