f(x)=cosx+sinx,证明存在a属于(0,0.5π)使f(x+a)=f(x+3a)恒成立
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 20:49:54
f(x)=cosx+sinx,证明存在a属于(0,0.5π)使f(x+a)=f(x+3a)恒成立
f(x)=cosx+sinx,证明存在a属于(0,0.5π)使f(x+a)=f(x+3a)恒成立
f(x)=cosx+sinx,证明存在a属于(0,0.5π)使f(x+a)=f(x+3a)恒成立
f(x+a)=f(x+3a)
sin(x+a)+cos(x+a)=sin(x+3a)+cos(x+3a)
sin(x+a)-sin(x+3a)=cos(x+3a)-cos(x+a)
2cos(x+2a)sin(-a)=-2sin(x+2a)sin(a)
sina[cos(x+2a)-sin(x+2a)]=0
sina=0,因a属于(0,π/2),则不存在a,使得f(x+a)=f(x+3a)
π/8
f(x)=cosx+sinx=V2(Sin(x+π/4)]
f(x+a)=V2[Sin(x+a+π/4)]
f(x+3a)=V2[Sin(x+3a+π/4)]
f(x+a)=f(x+3a)
由于a属于(0,0.5π)
Sin(t)=Sin(π-t) 两角差为π-2t 属于(0, π)
设Sin(x+a+π/4) Sin(x+3a+π/4)角差在(0...
全部展开
f(x)=cosx+sinx=V2(Sin(x+π/4)]
f(x+a)=V2[Sin(x+a+π/4)]
f(x+3a)=V2[Sin(x+3a+π/4)]
f(x+a)=f(x+3a)
由于a属于(0,0.5π)
Sin(t)=Sin(π-t) 两角差为π-2t 属于(0, π)
设Sin(x+a+π/4) Sin(x+3a+π/4)角差在(0, π)内 时f(x+a)=f(x+3a)成立
实际上(x+3a)-(x+a)=3a-a=2a 属于(0, π),故a存在。
x+3a+π/4 = π - x -a -π/4
收起