关于求极限的四道题 1 小时前 提问者:cw718521| 浏览次数:5次关于求极限的4道题 1 lim[(1+x)^(1/x)-e]/x,x-->0 2 lim[(x/(x+1)]^(x+3) ,x-->无穷 3 lim[(x+a)/(x-a)]^x x-->无穷 4 lim(1+2^n+3^n)^(1/n) ,n-->无穷
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 20:48:18
关于求极限的四道题 1 小时前 提问者:cw718521| 浏览次数:5次关于求极限的4道题 1 lim[(1+x)^(1/x)-e]/x,x-->0 2 lim[(x/(x+1)]^(x+3) ,x-->无穷 3 lim[(x+a)/(x-a)]^x x-->无穷 4 lim(1+2^n+3^n)^(1/n) ,n-->无穷
关于求极限的四道题
1 小时前 提问者:cw718521
| 浏览次数:5次
关于求极限的4道题
1 lim[(1+x)^(1/x)-e]/x,x-->0 2 lim[(x/(x+1)]^(x+3) ,x-->无穷 3 lim[(x+a)/(x-a)]^x x-->无穷 4 lim(1+2^n+3^n)^(1/n) ,n-->无穷
关于求极限的四道题 1 小时前 提问者:cw718521| 浏览次数:5次关于求极限的4道题 1 lim[(1+x)^(1/x)-e]/x,x-->0 2 lim[(x/(x+1)]^(x+3) ,x-->无穷 3 lim[(x+a)/(x-a)]^x x-->无穷 4 lim(1+2^n+3^n)^(1/n) ,n-->无穷
1.分子提出一个e得 原式=e lim [(1+x)^(1/x)/e-1]/x,又有当x趋近于0时 (1+x)^(1/x)/e趋近于1,由等价式 x-1~lnx,知分子等价于ln(1+x)^(1/x)/e=[ln(1+x)]/x-1 所以原式=elim [ln(1+x)-x]/x^2,然后运用洛必达法则 可得原式=-e/2;
2 .lim=lim(1-1/x+1)^(x+1)*lim(1-1/x+1)^2=lim1/(1-1/x+1)^(-x-1)*1=1/e
3.lim(x+a/x-a)^x=lim(1-2a/x-a)^(x-a )*lim(1-1/x-a)^a=lim[(1-1/(x-a)/2a)^(x-a/2a)]^2a=e^2a
4.x->n 则原式=lim e^ln(1+2^x+3^x)^1/x=e^lim[ ln(1+2^x+3^x)]/x 接下来洛必达法则可得
原式=e^lim(2^x*ln2+3^xln3)/(1+2^x+3^x)=e^ln3=3
第一题实在不想打数学符号太麻烦了,只是分析了一下