已知数列{an}前n项和为sn=3n^2-n,求证其为等差数列
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:11:19
已知数列{an}前n项和为sn=3n^2-n,求证其为等差数列
已知数列{an}前n项和为sn=3n^2-n,求证其为等差数列
已知数列{an}前n项和为sn=3n^2-n,求证其为等差数列
解 :
①当n=1 时 a1=S1=2
②当n≥2 时 an=Sn-Sn-1
Sn=3n^2-n
Sn-1= 3(n-1)²-(n-1)
所以an=6n-4 = 2 + 6(n-1)
带入n=1 得到a1=2 符合①
综上所述 an= 2 + 6(n-1)
因为 an+1-an=6
所以 {an}是以2为首项 6为公差的等差数列
哪里不懂的话请追问 理解的话给个采纳哦 谢啦
解析
因为
an=sn-s(n-1)
=3n²-n-3(n-1)²+(n-1)
=3n²-n-3(n²-2n+1)+n-1
=3n²-n-3n²+6n-3+n-1
=6n-4
an-a(n-1)=6
所以是首项为2,公差为6的等差数列
希望对你有帮助
学习进步O(∩_∩)O谢谢
sn=3n^2-n
s(n-1)=3(n-1)^2-(n-1)
作差得an=6n-2 an-a(n-1)=6n-2-6(n-1)+2
=6
已知数列{an}的前n项和为Sn,an+Sn=2,(n
已知数列an的前n项和为Sn,且An=3^n+2n,则Sn等于
1.已知数列an的前n项和为Sn,且Sn=2^n,求通项an;2.已知数列an的前n项和为Sn,且Sn=n^2+3n,求通项an;
已知数列{an}的前n项和为Sn=n^2-3n,求证:数列{an}是等差数列
已知数列{An}的前n项和Sn=3n²-2n,证明数列{An}为等差数列
一道关于数列 已知数列{An}的前n项和为Sn,Sn=3+2An,求An
已知数列an的前n项和为sn,且sn+an=n^2+3n+5/2,证明数列{an-n}是等比数列
已知数列前n项和为Sn,且Sn=-2n+3,求an及Sn
已知数列{an}前n项和为Sn=3×2^n-1,求通项公式
已知数列an的前n项和为sn sn=3(的n次方)+1求数列an
已知数列{an}的前n项和为Sn=-n2-2n,求an
已知数列An的前n项和为Sn=3n^2+2n,则an=?
已知数列 {an} 的前N项和为Sn=3n^2+2n-1 求an
已知数列an的前n项和为sn 若sn=2n-an,求an
数列An的前n项和为Sn,已知A1=1,An+1=Sn*(n+2)/n,证明数列Sn/n是等比数列
已知数列{an}的前n项和为Sn,通项an满足Sn+an=1/2(n²+3n-2)求通项公式an
已知数列an其前n项和为Sn,且Sn=3n^2+5n,求证数列an是等差数列
数列{an}的前n项和记为Sn,已知a1=1,an+1=n+2/n Sn(n=1,2,3,...)证明:(1)数列{Sn/n}是等比数列.(2)Sn+1=4*an