数列{an}的前n项和记为Sn,已知a1=1,an+1=n+2/n Sn(n=1,2,3,...)证明:(1)数列{Sn/n}是等比数列.(2)Sn+1=4*an

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/02 16:40:59

数列{an}的前n项和记为Sn,已知a1=1,an+1=n+2/n Sn(n=1,2,3,...)证明:(1)数列{Sn/n}是等比数列.(2)Sn+1=4*an
数列{an}的前n项和记为Sn,已知a1=1,an+1=n+2/n Sn(n=1,2,3,...)
证明:(1)数列{Sn/n}是等比数列.(2)Sn+1=4*an

数列{an}的前n项和记为Sn,已知a1=1,an+1=n+2/n Sn(n=1,2,3,...)证明:(1)数列{Sn/n}是等比数列.(2)Sn+1=4*an
第一问:
假设数列{Sn/n}是等比数列,则有:
Sn/n=(s1/1)*q^(n-1)
=a1*q^(n-1)
=q^(n-1)
代入an+1=n+2Sn/n可得到:
an+1=n+nq^(n-1).(1)
只要求的q为定值,第一问就得到证明.
由等式an+1=n+2Sn/n,可到a2=3,a3=6...(2)
由(1)可得到a3=2+2q.(3)
(2)、(3)可求得q=2,为定值得证.
第二问:
从第一问中,我们得到:sn=n*2^(n-1);
则有:sn-1=(n-1)*2^(n-2)
sn+1=(n+1)*2^n.(4)
根据数列公式:an=sn-sn-1=n*2^(n-1)-(n-1)*2^(n-2)
=2^(n-2)*[n*2-(n-1)]
=2^(n-2)*(n+1)
所以要证明的等式右边=4an=2^n*(n+1)=(4)=左边,得证.

已知数列{an}的前n项和记为sn,且a1=2,an+1=sn+2.求数列an的通项公式. 数列An的前n项和为Sn,已知A1=1,An+1=Sn*(n+2)/n,证明数列Sn/n是等比数列 数列{an}的前n项和记为sn,已知a1=1,an+1=((n+2)/n)sn(n∈n+),证明:(1)数列{sn/n}是等比数列;(2)sn+1=4an 详细 数列{an}的前n项和记为Sn,已知a1=1,an+1=(n+2*)Sn/n(n=1,2,3…),证明数列{Sn/n}是等比数列;Sn+1=4an 数列{an}的前n项和记为Sn,已知a1=1,an+1=n+2/n Sn(n=1,2,3,...)证明:(1)数列{Sn/n}是等比数列.(2)Sn+1=4*an 数列{an}的前n项和记为Sn,已知an=5sn-3(n∈N)求a1+a3+...+a2n-1的和 已知数列{an}的前n项和为Sn,若a1=1/2,Sn=n^2an-n(n-1)求Sn,an 已知数列an是等差数列,且a1不等于0,Sn为这个数列的前n项和,求limnan/Sn.limSn+Sn-1/Sn+Sn-1 数列{an}的前n项和记为sn,已知a1=1,An+1=(n+2)sn/n 1数列{sn/n}是等比数列 2sn+1=4an数列{an}的前n项和记为sn,已知a1=1,An+1=(n+2)sn/n 1 数列{sn/n}是等比数列 2 sn+1=4an 已知数列 an 的首相为a1=2,且an+1=1/2(a1+a2+……+an)(n∈N+),记Sn为数列{an}的前n项和,则Sn=? 已知数列{an}的前n项和记为Sn,已知a1=1,a(n+1)=[(n+2)/n]Sn,证明:(1)数列{Sn/n}是等比数列;(2)S(n+1)=4Sn 数列:已知数列{an}前 n项和为Sn,且a1=2,4Sn=ana(n+1).求数列{an}的通项公式. 已知数列[AN]的前N项和为SN且A1=1SN=N²AN[N∈N'] 猜想SN的表达式并验证 【急!已知Sn为数列{an}的前n项和 a1=1 Sn=n的平方 乘以an 求数列{an}的通项公 已知Sn为数列{an}的前n项和,a1=1,Sn=n²•an,求数列{an}的通项公式 已知数列{an}的前N项和为sn a1=1an+1=sn+3n+1,求数列{an}的通项公式 设数列An的前n项和为Sn,已知a1=1,An+1=Sn+3n+1求证数列{An+3}是等比数列 已知数列an的前n项和为Sn,Sn=三分之一×【a1-1】求a1,a2 .求证数列an是等比数列