解全微分方程
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 22:52:35
解全微分方程
解全微分方程
解全微分方程
1、∵y"=1/(x^2+1)
∴y'=arctanx+C1 (C1是常数)
∵y'(0)=0 ==>C1=0
∴y'=arctanx ==>y=xarctanx-ln(x^2+1)/2+C2 (应用分部积分法,C2是常数)
∵y(0)=0 ==>C2=0
∴原方程满足所给初始条件的特解是y=xarctanx-ln(x^2+1)/2.
2、∵y"=e^(2y) ==>y'dy'/dy=e^(2y)
==>y'dy'=e^(2y)dy
∴(y')^2=e^(2y)+C1 (C1是常数)
∵y(0)=y'(0)=0 ==>C1=-1
∴(y')^2=e^(2y)-1 ==>y'=±√(e^(2y)-1)
==>dy/√(e^(2y)-1)=±dx
==>e^(-y)dy/√(1-e^(2y))=±dx
==>-d(e^(-y))/√(1-e^(2y))=±dx
==>arccos(e^(-y))=C2±x (C2是常数)
==>e^(-y)=cos(C2±x)
∵y(0)=y'(0)=0 ==>C2=0
∴e^(-y)=cos(±x) ==>e^(-y)=cosx
故原方程满足所给初始条件的特解是e^(-y)=cosx.