欧几里得空间的维是怎么定义的?如果是向量还好理解;如果是函数,用积分代表内积,那么这个欧几里得空间的维数怎样定义?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 01:58:37
欧几里得空间的维是怎么定义的?如果是向量还好理解;如果是函数,用积分代表内积,那么这个欧几里得空间的维数怎样定义?
欧几里得空间的维是怎么定义的?
如果是向量还好理解;如果是函数,用积分代表内积,那么这个欧几里得空间的维数怎样定义?
欧几里得空间的维是怎么定义的?如果是向量还好理解;如果是函数,用积分代表内积,那么这个欧几里得空间的维数怎样定义?
对于无限维内积空间来讲就要看需求了,可以定义代数维数和正交维数.
代数维数就是一组代数基当中元素的个数(势或者基数),这是普通线性空间就有的,不必考虑内积,当然代数基的存在性依赖选择公理.
正交维数是正交基当中的元素个数,不过需要注意的是,按正交基展开通常不是有限线性组合,所以正交维数和代数维数是不同的,通常正交维数要小一些.当然,正交基的存在性也是有条件的,比如Hilbert空间可以保证正交基的存在性.
再给你举个例子吧,比如l^2空间,{(t,t^2,t^3,...):|t|
欧几里德空间(Euclidean Space),简称为欧氏空间,在数学中是对欧几里德所研究的2维和3维空间的一般化。这个一般化把欧几里德对于距离、以及相关的概念长度和角度,转换成任意数维的坐标系。 这是有限维、实和内积空间的“标准”例子。
欧氏空间是一个的特别的度量空间,它使得我们能够对其的拓扑性质,例如紧性加以调查。内积空间是对欧氏空间的一般化。内积空间和度量空间都在泛函分析中得到了探...
全部展开
欧几里德空间(Euclidean Space),简称为欧氏空间,在数学中是对欧几里德所研究的2维和3维空间的一般化。这个一般化把欧几里德对于距离、以及相关的概念长度和角度,转换成任意数维的坐标系。 这是有限维、实和内积空间的“标准”例子。
欧氏空间是一个的特别的度量空间,它使得我们能够对其的拓扑性质,例如紧性加以调查。内积空间是对欧氏空间的一般化。内积空间和度量空间都在泛函分析中得到了探讨。
欧几里德空间在对包含了欧氏几何和非欧几何的流形的定义上发挥了作用。一个定义距离函数的数学动机是为了定义空间中围绕点的开球。这一基本的概念正当化了在欧氏空间和其他流形之间的微分。微分几何把微分,会同导入机动性手法,局部欧氏空间,探讨了非欧氏流形的许多性质。
收起