数列〔an〕满足an+1+an=4n-3,当a1=2时,Sn为数列〔an〕前n项和,求S 2n+1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 06:01:24
数列〔an〕满足an+1+an=4n-3,当a1=2时,Sn为数列〔an〕前n项和,求S 2n+1
数列〔an〕满足an+1+an=4n-3,当a1=2时,Sn为数列〔an〕前n项和,求S 2n+1
数列〔an〕满足an+1+an=4n-3,当a1=2时,Sn为数列〔an〕前n项和,求S 2n+1
a(n+1) + an = 4n -3
a(n+1) - 2(n+1) + 5/2 = - ( an - 2n + 5/2 )
令 bn = an - 2n + 5/2
b1 = a1 - 2 + 5/2 = 5/2
b(n+1) = - bn
∴bn = 5/2 *(-1)^(n+1)
an = bn +2n - 5/2 = 5/2 [ (-1)^(n+1) - 1 ] + 2n
当n为奇数时,an = 2n
当n为偶数时,an = 2n - 5
当n为奇数时,Sn = (2+4+6+……+2n) - (n-1)/2 *5 = n² - 3/2 n + 5/2
当n为偶数时,Sn = (2+4+6+……+2n) - n/2 *5 = n² - 3/2 n
可合并为 Sn = n² - 3/2 n + 5/4 * [ (-1)^(n+1) + 1]
2n+1为奇数
S(2n+1) = (2n+1)² - 3/2 (2n+1) + 5/2
= 4n² - 7n + 2
分奇偶
数列〔an〕满足an+1+an=4n-3,当a1=2时,求数列〔an〕前n项和
已知数列{an}满足a1=4/3,且an+1=4(n+1)an/3an+n
数列{an}满足a1=1,且an=an-1+3n-2,求an
已知数列{an}满足a1=4/3,且an+1=〔4(n+1)an〕/(3an+n) (n∈N*)已知数列{an}满足a1=4/3,且an+1=〔4(n+1)an〕/(3an+n)(n∈N*).(1)求1/a1+2/a2+…+n/an的值;(2)求证:a1+a2/2+a3/3+…+an/n≤ n+ 7/12-(1/4)^n
已知数列{an}满足a1=4,3an=5an(n下-1) +1,求an
数列an满足,a1=1/4,a2=3/4,an+1=2an-an-1(n≥2,n属于N*),数列bn满足b1
数列{an)满足an=4a(n-1)+3,a1=0,求数列{an}的通项公式
数列an满足a1=1/3,Sn=n(2n-1)an,求an
数列〔an〕满足an+1+an=4n-3,当a1=2时,Sn为数列〔an〕前n项和,求S 2n+1
已知数列{an}满足,a1=2,a(n+1)=3根号an,求通项an数列{an}满足:an>0,且根号下Sn=an+1/4,求通项an
数列{an}满足a1=1 an+1=2n+1an/an+2n
数列[An]满足a1=2,a(n+1)=3an-2 求an
已知数列an满足a1=4,an=n+1/n-1乘以an-1则an=
已知数列{an}满足a1=-1,an=[(3n+3)an+4n+6]/n,求数列an的通向公式.已知数列{an}满足a1=-1,an=[(3n+3)an+4n+6]/n,bn=3^(n-1)/an+2.求数列an的通向公式.第一遍打错了。是下面这个。an+1=[(3n+3)an+4n+6]/n,bn=3^(n-1)/an+2
数列{an}满足a1=1,an=3n+2an-1(n≥2)求an
已知数列{an}满足a1=1,an=(an-1)/3an-1+1,(n>=2,n属于N*),求数列{an}的通项公式
已知数列{an}满足a1=1 an+1=an/(3an+1) 则球an
已知数列{an}满足an+1=an+n,a1等于1,则an=?