两个矩阵特征值相同能否推出秩相同?我觉得是可以推出的,求证明.shawhom 的说法不对。相似矩阵的特征值一定相同,但特征值相同的矩阵不一定相似。例如例如A1 0 00 1 00 0 2B1 1 00 1 00 0 2青蛇外
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 11:14:32
两个矩阵特征值相同能否推出秩相同?我觉得是可以推出的,求证明.shawhom 的说法不对。相似矩阵的特征值一定相同,但特征值相同的矩阵不一定相似。例如例如A1 0 00 1 00 0 2B1 1 00 1 00 0 2青蛇外
两个矩阵特征值相同能否推出秩相同?
我觉得是可以推出的,求证明.
shawhom 的说法不对。相似矩阵的特征值一定相同,但特征值相同的矩阵不一定相似。例如
例如
A
1 0 0
0 1 0
0 0 2
B
1 1 0
0 1 0
0 0 2
青蛇外史写作中对“特征值相同”的理解有误。特征值相同指的是特征值的值,以及每个值的重根数量均相同。
目前可以推出的是对于特征值中没有0的n阶矩阵,由于行列式的值为特征值乘积,可知行列式不为0,即矩阵可逆,所以矩阵的秩为n。但是当特征值中有0的情况我就不能证明了。
两个矩阵特征值相同能否推出秩相同?我觉得是可以推出的,求证明.shawhom 的说法不对。相似矩阵的特征值一定相同,但特征值相同的矩阵不一定相似。例如例如A1 0 00 1 00 0 2B1 1 00 1 00 0 2青蛇外
特征值相同,特征值的重数可以不同;如果特征值0的重数不同,秩就未必相同.
例如,两个三阶矩阵diag(1,1,0)与diag(1,0,0)具有相同的特征值(1和0),但是前者的秩为2,后者的秩为1.
所以答案是否定的.
如果两个矩阵都没有特征值零,则无论其他特征值是否相同,它们的秩都一样,这是显然的.
如果两个矩阵都有特征值零,则即使特征值零的重数相同(无论其他特征值以及对应特征值的重数是否相同),它们的秩也可能不同.例如:两个2×2矩阵,一个元素全为零,另一个,右上角元素为1,其余为零.
因此,答案仍然是否定的.
(至于两个矩阵一个有特征值零一个没有,那它们的秩显然不同,但这种情况不是你所感兴趣的.)
《线性代数》(李炯生、查建国编,中国科学技术大学1988年版)引进了特征值的几何重数的概念,而把通常意义下的特征值重数(即作为特征多项式的根的重数)称为代数重数.一个特征值的几何重数,等于属于该特征值的线性无关特征向量的个数,或者说等于属于该特征值的特征子空间的维数.
按照这个定义,一个矩阵的秩等于它的阶数减去它的零度,而它的零度正好就是它的特征值零的几何重数.因此,两个矩阵的秩要相同,关键是特征值零的几何重数(而不是代数重数)要相同,至于其他特征值是否相同,则无关紧要.
以上讨论均有一个前提假定,即两个矩阵的阶数相同.如果这不成立,那么上面说的统统不对,请自动无视.
多余的话:
我想这个问题并非很难,你既然能举例说明特征值(包括重数)相同的矩阵未必相似,为什么在这个更简单的问题上反而转不过来呢?没道理,你是能转得过来的,只是你想得还不够.遇到事情,自己再多想想.我们当时学这些的时候,baidu知道根本还不存在,没有谁可以问,所有能依靠的只有自己的大脑.
?不能
当然可以了。
两个矩阵特征值相同,就是两个矩阵相似!
相似矩阵具有相同的秩
neng