矩阵相似的充分与必要条件矩阵相似则1秩相同2特征值相同3特征多项式相同4行列式相同.但是有以上几点能否推出矩阵相似呢?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 14:00:38

矩阵相似的充分与必要条件矩阵相似则1秩相同2特征值相同3特征多项式相同4行列式相同.但是有以上几点能否推出矩阵相似呢?
矩阵相似的充分与必要条件
矩阵相似则1秩相同2特征值相同3特征多项式相同4行列式相同.但是有以上几点能否推出矩阵相似呢?

矩阵相似的充分与必要条件矩阵相似则1秩相同2特征值相同3特征多项式相同4行列式相同.但是有以上几点能否推出矩阵相似呢?
不能.
两个矩阵相似的判断超出了线性代数的范围
定理:A,B 相似的充要条件是 A-λE 与 B-λE 等价

但是有以上几点能否推出矩阵相似呢?----------------------不行。特征值除有相同的代数重数外还需加上特征值有相同的几何重数。

矩阵A与B相似的充分必要条件是什么? 矩阵相似的充分与必要条件矩阵相似则1秩相同2特征值相同3特征多项式相同4行列式相同.但是有以上几点能否推出矩阵相似呢? n阶方阵A与对角矩阵相似的充分必要条件是A有? 矩阵与对角矩阵相似的充要条件飞定理5.3 n阶矩阵A与一个对角矩阵相似的充分必要条件是A的最小多项式无重根。定理5.4 复数矩阵A与对角矩阵相似的充分必要条件是A的初等因子全是一次的。 若A,B是实对称矩阵,则A与B有相同的特征值是A与B相似的充分必要条件.为什么? 矩阵A与B相似的充分必要条件是什么?AB是任意矩阵,没有特别指明说AB是实对称矩阵或者可对角化,若需要可以将以上将其作为充分必要条件的一部分. 线性代数 相似矩阵的充分条件两个矩阵1 特征值相等 2 秩相等 3 正对角线和相等 4 行列式相等 这四个条件是矩阵相似的充分条件还是必要条件啊 那位大哥指点下 n阶实对称矩阵A和B相似的充分必要条件是 n阶矩阵A具有n个不同的特征值是A与对角矩阵相似的充分非必要条件,为什么? 与对角矩阵相似的充分必要条件 对于每一个ni 重特征根λi 矩阵λi -A的秩是n-ni 这里的ni 是什么?n阶矩阵与对角矩阵相似的充分必要条件 对于每一个ni 重特征根λi 矩阵λi -A的秩是n-ni这里的ni 单位矩阵相似的问题单位矩阵与可逆矩阵相似 相似矩阵行列式相等 那可逆矩阵的行列式岂不是都为1吗? 矩阵等价,矩阵相似,矩阵合同的区别与联系 设A、B均为n阶正规矩阵,证明:A与B相似的充分必要条件是A与B有相同的特征值 证明:n阶矩阵A与对角矩阵相似的充分必要条件是对于每一个ni重特征根λi,矩阵λiI-A的秩是n-ni 线性代数 特征值 特征向量 矩阵可相似对角化【A有n个线性无关的特征向量是A与对角矩阵相似的充分必要条件.A有n个不同的特征值是A与对角矩阵相似的充分条件.】那在我看来“A有n个线性无 设A与B都是n阶对角矩阵,证明:A与B相似的充分必要条件是A与B的对角线元素除了排列次序外完全相同请问:设A与B都是n阶对角矩阵,证明:A与B相似的充分必要条件是A与B的对角线元素除了排列次 矩阵的相似合同 (1)若n阶矩阵A与n阶对角矩阵A相似.(2)n阶矩阵A有n个相异特征值.这两个是A可对角化的什么条件?只是充分条件,不是充分必要条件把?