设矩阵A=-1 1 0 -4 3 0 1 0 2(1)求A的特征值和特征向量;设矩阵A=-1 1 0 -4 3 0 1 0 2,(1)求A的特征值和特征向量;(2)判断矩阵A是否与对角矩阵相似,若相似写出可逆矩阵P及对角矩阵Λ.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 02:17:44

设矩阵A=-1 1 0 -4 3 0 1 0 2(1)求A的特征值和特征向量;设矩阵A=-1 1 0 -4 3 0 1 0 2,(1)求A的特征值和特征向量;(2)判断矩阵A是否与对角矩阵相似,若相似写出可逆矩阵P及对角矩阵Λ.
设矩阵A=-1 1 0 -4 3 0 1 0 2(1)求A的特征值和特征向量;
设矩阵A=-1 1 0 -4 3 0 1 0 2,(1)求A的特征值和特征向量;(2)判断矩阵A是否与对角矩阵相似,若相似写出可逆矩阵P及对角矩阵Λ.

设矩阵A=-1 1 0 -4 3 0 1 0 2(1)求A的特征值和特征向量;设矩阵A=-1 1 0 -4 3 0 1 0 2,(1)求A的特征值和特征向量;(2)判断矩阵A是否与对角矩阵相似,若相似写出可逆矩阵P及对角矩阵Λ.
|A-λE|
= (2-λ)[(-1-λ)(3-λ)+4]
= (2-λ)(λ^2-2λ+1)
= (2-λ)(1-λ)^2.
所以A的特征值为 1,1,2.
(A-E)X=0 的基础解系为 a1=(1,2,-1)^T.
所以A的属于特征值1的全部特征向量为 k1a1,k1≠0
(A-2E)X=0 的基础解系为 a2=(0,0,1)^T.
所以A的属于特征值2的全部特征向量为 k2a2,k2≠0
A没有3个线性无关的特征向量,所以A不能与对角矩阵相似

4 1 0 设矩阵A= 2 4 1 ,矩阵B满足AB-A=3B+E,求矩阵B (详解,3 0 5 设矩阵A=-1 1 0 -4 3 0 1 0 2(1)求A的特征值和特征向量;设矩阵A=-1 1 0 -4 3 0 1 0 2,(1)求A的特征值和特征向量;(2)判断矩阵A是否与对角矩阵相似,若相似写出可逆矩阵P及对角矩阵Λ. 已知矩阵求逆矩阵设矩阵A=[1 -1 ] [-1 0]则A^-1= 设矩阵A=5 0 0 求矩阵A^-1 0 1 4 1 2 7, 设矩阵A【0,1,2】【1,1,4】【2,-1,0】的逆矩阵 设矩阵A=[2 1 0 0,1 1 0 0 ,-1 2 2 5,1 -1 1 3]则矩阵A的逆矩阵 设矩阵A=(1 01 ,0 3 0,1 0 1),矩阵X满足AX+E=A^3+X 试求矩阵X 设矩阵A,B满足关系式AB=2(A+B),其中A={3 0 1,1 1 0,0 1 4},求矩阵B 设矩阵A=|1 -2| |4 3|,I为单位矩阵,则(1-A)^T=~设矩阵A=|1 -2| I 为单位矩阵,则(1-A)^T=~|4 3 |矩阵E等于多少 设3阶矩阵A的特征值为-1,0,1,矩阵B=A³-4A²,则/B+4E/= 设矩阵A和X满足关系式XA+E=A^2-X,其中A=(1 2 0,3 4 0,5 6 7)矩阵X 矩阵计算设A1=矩阵 1 0 A2=矩阵 1 -1 A=矩阵A1 00 3 1 0 0 A2则A的逆矩阵为 设A为n阶矩阵,且A^3=0,求(A+2E)^(-1) 设实对称矩阵A=1 -2 0 -2 2 -2 0 -2 3 求正交矩阵P,使P^-1AP为对角矩阵. 求可逆矩阵P使PA为矩阵A的行最简形矩阵设矩阵A=1 2 32 3 43 4 5求一个可逆阵P,使PA为矩阵A的行最简形矩阵 求矩阵的秩r(A)设4阶矩阵A= 1 0 -1 2 求矩阵A的秩r(A) 1 1 0 -1 2 1 -1 1 3 2 -1 0 请列明细谢谢~ 设A为对称矩阵,且|A|≠0,证明:A^-1也为对称矩阵 设矩阵A={3 0 0 0 1 2 0 4 7},则A-1=设矩阵A={3 0 0 ; 0 1 2 ; 0 4 7},则A^-1=()