求二次根式性质概念乘除复习提纲
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 18:00:50
求二次根式性质概念乘除复习提纲
求二次根式性质概念乘除复习提纲
求二次根式性质概念乘除复习提纲
第6课 数的开方与二次根式
〖知识点〗
平方根、立方根、算术平方根、二次根式、二次根式性质、最简二次根式、
同类二次根式、二次根式运算、分母有理化
〖大纲要求〗
1.理解平方根、立方根、算术平方根的概念,会用根号表示数的平方根、立方根和算术平方根.会求实数的平方根、算术平方根和立方根(包括利用计算器及查表);
2.了解二次根式、最简二次根式、同类二次根式的概念,会辨别最简二次根式和同类二次根式.掌握二次根式的性质,会化简简单的二次根式,能根据指定字母的取值范围将二次根式化简;
3.掌握二次根式的运算法则,能进行二次根式的加减乘除四则运算,会进行简单的分母有理化.
内容分析
1.二次根式的有关概念
(1)二次根式
式子 叫做二次根式.注意被开方数只能是正数或O.
(2)最简二次根式
被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.
(3)同类二次根式
化成最简二次根式后,被开方数相同的二次根式,叫做同类二次根式.
2.二次根式的性质
3.二次根式的运算
(1)二次根式的加减
二次根式相加减,先把各个二次根式化成最简二次根式,再把同类三次根式分别合并.
(2)三次根式的乘法
二次根式相乘,等于各个因式的被开方数的积的算术平方根,即
二次根式的和相乘,可参照多项式的乘法进行.
两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个三次根式互为有理化因式.
(3)二次根式的除法
二次根式相除,通常先写成分式的形式,然后分子、分母都乘以分母的有理化因式,把分母的根号化去(或分子、分母约分).把分母的根号化去,叫做分母有理化.
〖考查重点与常见题型〗
1.考查平方根、算术平方根、立方根的概念.有关试题在试题中出现的频率很高,习题类型多为选择题或填空题.
2.考查最简二次根式、同类二次根式概念.有关习题经常出现在选择题中.
3.考查二次根式的计算或化简求值,有关问题在中考题中出现的频率非常高,在选择题和中档解答题中出现的较多.