∑为球面x^2+y^2+z^2=4的外侧,则对坐标的曲面积分∫∫x^2dxdy,关于这题本人算到答案是4π,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 02:31:30
∑为球面x^2+y^2+z^2=4的外侧,则对坐标的曲面积分∫∫x^2dxdy,关于这题本人算到答案是4π,
∑为球面x^2+y^2+z^2=4的外侧,则对坐标的曲面积分∫∫x^2dxdy,关于这题本人算到答案是4π,
∑为球面x^2+y^2+z^2=4的外侧,则对坐标的曲面积分∫∫x^2dxdy,关于这题本人算到答案是4π,
高斯公式得∫∫∫2xdxdydz,然后∫dx∫∫2xdydz,2x提前,截面面积(16-x^2)π,即得∫2x(16-x^2)πdx,奇函数结果为零.
∮∮(下标∑)(xdydz+ydzdx+zdxdy),其中∑ 为球面 x^2+y^2+z^2=R^2的外侧.
利用高斯公式计算曲面积分(如图),其中∑为球面x^2+y^2+z^2=a^2的外侧
求∫∫(xdydz+ydzdx+zdxdy)/(x^2+y^2+z^2),其中 ∑是球面x^2+y^2+z^2=a^2的外侧.
∑为球面x^2+y^2+z^2=4的外侧,则对坐标的曲面积分∫∫x^2dxdy,关于这题本人算到答案是4π,
用第二类曲面积分求xdydz+ydzdx+zdxdy积分曲面为球面x^2+Y^2+Z^2=A^2的外侧
关于曲面积分的疑问∫∫x^3dydz+y^3dxdz+z^3dxdy,其中Σ为球面x^2+y^2+z^2=a^2的外侧∫∫x^3dydz+y^3dxdz+z^3dxdy,其中Σ为球面x^2+y^2+z^2=a^2的外侧.疑问是这样的:把它化成 3∫∫∫(x^2+y^+z^2)dv 为什么不
高等数学二重积分假设W为球面X^2+Y^2+Z^2=A^2的外侧(A>0)则 ‖X^3 dydz +y^3dzdx +z^3dxdy 的值是?(‖的下标为W)
∫∫x^2dydZ十y^2dZdx+Z^2dxdy其中s为球面(x-a)^2+(y-b)^2+(Z-c)^2=R^2的外侧
用高斯公式计算曲面积分∮xy^2dydz+yz^2dzdx+zx^2dxdy,其中∑为球面x^2+y^2+z^2=R^2的外侧.∮这符号下面还有个小写的∑
求∫∫(xdydz+ydzdx+zdxdy)/(x^2+y^2+z^2)^1/2,其中 ∑是球面x^2+y^2+z^2=a^2的外侧.
求∫∫z^2dxdy,其中∑为x^2+y^2+z^2=a^2的外侧
高斯公式 ∫∫(∑)x^3dydz+y^3dzdx+z^2dxdy,其中∑为球面x^2+y^2+z^2=a^2外侧用完Gauss公式后被积函数是3(x^2+y^2+z^2),3提到积分号外面,剩下的做球座标后为什么是r^2不是a^2,不是有x^2+y^2+z^2=a^2吗?
有谁能帮我解决一道“三重积分”的问题~求向量A穿过曲面∑流向指定侧的通量:A=(2x+3z)i-(xz+y)j+(y+2z)k,∑是以点(3,-1,2)为球心,半径R=3的球面,流向外侧.
高数:计算∫∫xyzdxdy,其中∑为球面x²+y²+z²=1的外侧 x≥0,y≥0求之后极坐标求出具体数值步骤2∫∫xy√1-x²-y²dxdy 之后用极坐标的步骤
利用高斯公式求第二型曲面积分利用高斯公式求解第二型曲面积分被积分的式子是 x^3dydz + y^3 dxdz + z^3 dxdy , 积分面为球面x^2+y^2+z^2=a^2 的外侧;我是这样算的 利用高斯公式 原式化为 3(x^2+y^2+
求向量A穿过曲面∑流向指定侧的通量 A=(2X+3y)i-(xz+y)j+(y^2+2z)k,∑是以点(3,1,2)为球心,半径R=3的球面流向外侧A i j k 带箭头
计算曲面积分∫∫x^3dydz+y^3dzdx+z^3dxdy,其中积分区域为,x^2+y^2+z^2=1的外侧.运用高斯公式可得3∫∫∫(x^2+y^2+z^2)dV,若把后面条件带入可得3∫∫∫dv=4π,而运用球面坐标系可算的结果12π/5,答案是后
∫∫e^z/√(x^2+y^2 ) dxdy,∑为锥面,z=√(x^2+y^2 )及平面z=1,z=2所围的立体表面的外侧.如图.