(2011南充)如图,等腰梯形ABCD中,AD∥BC,AD=AB=CD=2,∠C=60°,M是BC的中点.(1)求证:△MDC是等边三角形; (2)将△MDC绕点M旋转,当MD(即MD′)与AB交于一点E,MC(即MC′)同时与AD交于一点F时,点E
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:20:38
(2011南充)如图,等腰梯形ABCD中,AD∥BC,AD=AB=CD=2,∠C=60°,M是BC的中点.(1)求证:△MDC是等边三角形; (2)将△MDC绕点M旋转,当MD(即MD′)与AB交于一点E,MC(即MC′)同时与AD交于一点F时,点E
(2011南充)如图,等腰梯形ABCD中,AD∥BC,AD=AB=CD=2,∠C=60°,M是BC的中点.
(1)求证:△MDC是等边三角形; (2)将△MDC绕点M旋转,当MD(即MD′)与AB交于一点E,MC(即MC′)同时与AD交于一点F时,点E,F和点A构成△AEF.试探究△AEF的周长是否存在最小值.如果不存在,请说明理由;如果存在,请计算出△AEF周长的最小值.
(2011南充)如图,等腰梯形ABCD中,AD∥BC,AD=AB=CD=2,∠C=60°,M是BC的中点.(1)求证:△MDC是等边三角形; (2)将△MDC绕点M旋转,当MD(即MD′)与AB交于一点E,MC(即MC′)同时与AD交于一点F时,点E
△AEF的周长存在最小值,理由如下:连接AM,由(1)平行四边形ABMD是菱形,△MAB,△MAD和△MC′D′是等边三角形,∠BMA=∠BME+∠AME=60°,∠EMF=∠AMF+∠AME=60°,∴∠BME=∠AMF,在△BME与△AMF中,BM=AM,∠EBM=∠FAM=60°,∴△BME≌△AMF(ASA),∴BE=AF,ME=MF,AE+AF=AE+BE=AB,∵∠EMF=∠DMC=60°,故△EMF是等边三角形,EF=MF,∵MF的最小值为点M到AD的距离√3,即EF的最小值是√3,△AEF的周长=AE+AF+EF=AB+EF,△AEF的周长的最小值为2+√3,答:存在,△AEF的周长的最小值为2+√3.