椭圆的方程为X^2/4+Y^2/3=1,试确定t的取值范围,使椭圆上有了两个不同的点关于直线y=4x+t

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 10:12:16

椭圆的方程为X^2/4+Y^2/3=1,试确定t的取值范围,使椭圆上有了两个不同的点关于直线y=4x+t
椭圆的方程为X^2/4+Y^2/3=1,试确定t的取值范围,使椭圆上有了两个不同的点关于直线y=4x+t

椭圆的方程为X^2/4+Y^2/3=1,试确定t的取值范围,使椭圆上有了两个不同的点关于直线y=4x+t
本题研究的是关于对称问题,可以考虑设出与对称直线垂直的直线方程,用判别式大于0解决,但运算繁.
亦可以考虑中点在椭圆内来解题,使用点差法(差分法)运算简单.
设点A(x1,y1),B(x2,y2)
由X1^2/4+Y1^2/3=1,X2^2/4+Y2^2/3=1
作差得(X1^2-X2^2)/4+(Y1^2-Y2^2)/3=0
所以(y1-y2)/(x1-x2)=-3(x1+x2)/4(y1+y2)
又(y1-y2)/(x1-x2)=-1/4
所以中点(x0,y0)满足-3x0/4y0=-1/4
即y0=3x0 ,
又y0=4x0+t,
所以x0=-t,y0=-3t,
要使满足题目意思
必须有中点在椭圆内部
所以X0^2/4+Y0^2/3

本题研究的是关于对称问题,可以考虑设出与对称直线垂直的直线方程,用判别式大于0解决,但运算繁.
亦可以考虑中点在椭圆内来解题,使用点差法(差分法)运算简单.
设点A(x1,y1),B(x2,y2)
由X1^2/4+Y1^2/3=1,X2^2/4+Y2^2/3=1
作差得(X1^2-X2^2)/4+(Y1^2-Y2^2)/3=0
所以(y1-y2)/...

全部展开

本题研究的是关于对称问题,可以考虑设出与对称直线垂直的直线方程,用判别式大于0解决,但运算繁.
亦可以考虑中点在椭圆内来解题,使用点差法(差分法)运算简单.
设点A(x1,y1),B(x2,y2)
由X1^2/4+Y1^2/3=1,X2^2/4+Y2^2/3=1
作差得(X1^2-X2^2)/4+(Y1^2-Y2^2)/3=0
所以(y1-y2)/(x1-x2)=-3(x1+x2)/4(y1+y2)
又(y1-y2)/(x1-x2)=-1/4
所以中点(x0,y0)满足-3x0/4y0=-1/4
即y0=3x0 ,
又y0=4x0+t,
所以x0=-t,y0=-3t,
要使满足题目意思
必须有中点在椭圆内部
所以X0^2/4+Y0^2/3<1
即(-t)^2/4+(-3t)^2/3<1
所以t^2<4/13
所以-2(根号13)/13

收起

已知椭圆方程为x^2/4+y^2/3=1,求以椭圆的焦点为焦点,离心率为根号2的双曲线方程 椭圆C与椭圆(x-2)^2/9+(y-3)^2/16=1关于直线x+y=0对称,则椭圆C的方程为? 已知椭圆 + =1内有一点P(1,-1),F为椭圆的右焦点,M为椭圆上的一个动点,则|MP|+|MF|的最大值为椭圆方程为: x^2/4+y^2/3=1 求渐近线方程为3x+-4y=0,焦点为椭圆X^2/10+Y^2/5=1的一对顶点的双曲线的方程 求渐近线方程为3x+-4y=0,焦点为椭圆X^2/10+Y^2/5=1的一对顶点的双曲线的方程 已知椭圆的中心在原点,准线方程是X=正负4,如果直线:3X-2Y=0与椭圆的交点在X轴上的射影恰为椭圆的焦点求椭圆的方程 椭圆c与椭圆(x-3)平方/9+(y-2)平方/4=1关于直线x+y=0对称,椭圆c的方程是? 已知椭圆的方程为3x方+y方=18,1 求椭圆的交点坐标及离心率 2 求以椭圆的焦点为顶点、定点为焦点的已知椭圆的方程为3x方+y方=18,1 求椭圆的交点坐标及离心率2 求以椭圆的焦点为顶点、定点为 椭圆的方程?以双曲线 x^2/4 -y^2=1 的左焦点为焦点,左准线为准线的椭圆方程是什么? 设椭圆方程为x^2/4+y^2=1,则过点P(0,4)的椭圆的切线方程为 椭圆最大距离已知:椭圆方程为:x^2/4+y^2=1,圆方程为x^2+(y-4)^2=4,求椭圆上的点到圆上的点的最大距离 设椭圆的方程为x^2/16 + y^2/12 =1,则该椭圆的离心率为 设椭圆的方程为x^2/16+y^2/12=1,则该椭圆的离心率为 与椭圆x^2/4+y^2/9=1有相同的焦点,且过点(2,-3)的椭圆方程为 已知椭圆的方程为x^2/4+y^2/3=1,若椭圆的点P在第二象限,且 已知椭圆的方程为x^2/4+y^2/3=1,若椭圆的点P在第二象限,且 以椭圆x²/4+y²/3=1的顶点为焦点且经过点(-1,2)求椭圆标准方程? 已知椭圆方程:x^2/4 + y^2/3=1,K是椭圆上一动点,求线段KF1的中点B的轨迹方程(F1为椭圆左焦点)