设a,b属于R,且a不等于2,若定义在区间(-b,b)内的函数f(x)=lg((1+ax)/(1+2x))是奇函数,则a+b的取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 09:20:19

设a,b属于R,且a不等于2,若定义在区间(-b,b)内的函数f(x)=lg((1+ax)/(1+2x))是奇函数,则a+b的取值范围
设a,b属于R,且a不等于2,若定义在区间(-b,b)内的函数f(x)=lg((1+ax)/(1+2x))是奇函数,则a+b的取值范围

设a,b属于R,且a不等于2,若定义在区间(-b,b)内的函数f(x)=lg((1+ax)/(1+2x))是奇函数,则a+b的取值范围
奇函数:f(-x)=lg[(1-ax)/(1-2x)]=lg(1-ax)-lg(1-2x)=-f(x)=-lg(1+ax)+lg(1+2x),
所以lg(1-ax)+lg(1+ax)=lg(1+2x)+lg(1-2x),
所以1-(ax)^2=1-4x^2.
所以a=±2,而由已知,a≠2,所以a=-2,
而(1-2x)/(1+2x)>0,所以(1-4x^2)/(1+2x)^2>0,所以-1/2

设a,b属于R,且a不等于b,a+b=2,则必有A、1 设f(x)是定义在R上的奇函数,且对任意a,b属于R,当a+b不等于0时,都有f设f(x)是定义在R上的奇函数,且对任意a,b属于R,当a+b不等于0时,都有f(a)+f(b)/(a+b)大于0 (1)若a大于b,试比较f(a) 设a,b属于R,且a不等于2定义在区间(-b,b)上的函数f(x)=lg(1+ax)/(1+2x)为奇函数则b取值范围 设定义在区间(-b,b)上的函数f(x)=lg 1+ax是奇函数(a,b 属于R,且a不等于-2)如图,答得好 已知函数f(x),g(x)在R上有定义,对任意的x,y属于R有f(x-y)=f(x)g(y)-g(x)f(y)且f(1)不等于0,求f(x)为奇函若f(1)=f(2)求g(1)+g(-1)的值2.设函数f(x)=-|x-1|+|x-2|,若不等式|a+b|+|a-b|>=|a|f(x)(a不等于0,ab属于R)求实数x的 设a,b属于R,且a不等于2,若定义在区间(-b,b)内的函数f(x)=lg((1+ax)/(1+2x))是奇函数,则a+b的取值范围 定义在R上的函数y=fx f0不等于0 当x>0时,fx>1,且对任意的a,b属于R,都有f(a+b定义在R上的函数y=fx; f0不等于0; 当x>0时,fx>1,且对任意的a,b属于R,都有f(a+b)=f a+f b.证明:fx是R上增函数. 若f 设a,b属于r+,且a不等于b,求证a^3+b^3大于a^2b+ab^2急 已知:a,b属于R+,且a不等于b,求证:2ab/(a+b) 设f(x)是定义在[-1,1]上的奇函数,且对属于[-1,1]的任意实数a,b,当a+b不等于0时,都 设a、b属于R,且a≠2,若奇函数f(x)=lg(1+ax)/(1+2x)在区间(-b,b)上有定义1.求a的值2.求b的取值范围 设a,b=R+,且a不等于b,求证 2ab/a+b 设a,b∈R,且a不等于2,定义在区间(-b,b)内的函数,f(x)=lg(1+ax/1+2x)是奇函数,则a+b=? 设f(x)是定义在【-1,1】上的奇函数,且对任意的ab属于【-1,1】,当a+b不等于0{f(a)+f(b)}/a+b>0解不等式f(x-1/2) 设a,b属于R,且a不等于2,定义在区间(b,-b)内的函数f(X)=lg(1+ax/1+2x)是奇函数1.求b的取值范围2.讨论函数f(x)的单调性 函数的?设a b属于R,且a不等于2,定义在区间(-b,b)内的函数y=lg的真数是(1+ax)/(1+2x)是奇函数.求b的取值范围讨论函数y 的单调性 设函数f(x)=√(a^2-x^2)/|x+a|+a.a属于R且a不等于0.(1)判断当a=1及a=-2时函数的奇偶性.设函数f(x)=√(a^2-x^2)/|x+a|+a.a属于R且a不等于0.(1)判断当a=1及a=-2时函数的奇偶性.(2)在a属于R且a不等于0条件 设a,b属于R,若定义在区间(-b,b)内的函数lg(1+ax)/(1+2x)是奇函数,求a+b的范围