英文翻译中文转换器
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 06:11:34 体裁作文
篇一:12位AD转换器中英文翻译资料
英文原文
12-Bit A/D Converter
CIRCUIT OPERATION
The AD574A is a complete 12-bit A/D converter which requires no external components to provide the complete successive approximation analog-to-digital conversion function. A block diagram of the AD574A is shown in Figure 1.
Figure 1. Block Diagram of AD574A 12-Bit A-to-D Converter
When the control section is commanded to initiate a conversion (as described later), it enables the clock and resets the successiveapproximation register (SAR) to all zeros. Once a conversion cycle has begun, it cannot be stopped or restarted and data is not available from the output buffers. The SAR, timed by the clock, will sequence through the conversion cycle and return an end-of-convert flag to the control section. The control section will then disable the clock, bring the output status flag low, and enable control functions to allow data read functions by external command.
During the conversion cycle, the internal 12-bit current output DAC is sequenced by the SAR from the most significant bit (MSB) to least significant bit (LSB) to provide an output
current which accurately balances the input signal current through the 5kΩ(or10kΩ) input resistor. The comparator determines whether the addition of each successively-weighted bit current causes the DAC current sum to be greater or less than the input current; if the sum is less, the bit is left on; if more, the bit is turned off. After testing all the bits, the SAR contains a 12-bit binary code which accurately represents the input signal to within 1/2 LSB.
The temperature-compensated buried Zener reference provides the primary voltage reference to the DAC and guarantees excellent stability with both time and temperature. The reference is trimmed to 10.00 volts ?0.2%; it can supply up to 1.5 mA to an external load in addition to the requirements of the reference input resistor (0.5 mA) and bipolar offset resistor (1 mA) when the AD574A is powered from ?15 V supplies. If the AD574A is used with ?12 V supplies, or if external current must be supplied over the full temperature range, an external buffer amplifier is recommended. Any external load on the AD574A reference must remain constant during conversion. The thin-film application resistors are trimmed to match the full-scale output current of the DAC. There are two 5 k??input scaling resistors to allow either a 10 volt or 20 volt span. The 10 k??bipolar offset resistor is grounded for unipolar operation and connected to the 10 volt reference for bipolar operation.
DRIVING THE AD574 ANALOG INPUT
Figure 2. Op Amp – AD574A Interface
The output impedance of an op amp has an open-loop value which, in a closed loop, is divided by the loop gain available at the frequency of interest. The amplifier should have acceptable loop gain at 500 kHz for use with the AD574A. To check whether the output
properties of a signal source are suitable, monitor the AD574’s input with an oscilloscope while a conversion is in progress. Each of the 12 disturbances should subside in sorless.
For applications involving the use of a sample-and-hold amplifier, the AD585 is recommended. The AD711 or AD544 op amps are recommended for dc applications. SAMPLE-AND-HOLD AMPLIFIERS
Although the conversion time of the AD574A is a maximum of 35 ?s, to achieve accurate 12-bit conversions of frequencies greater than a few Hz requires the use of a sample-and-hold amplifier (SHA). If the voltage of the analog input signal driving the AD574A changes by more than 1/2 LSB over the time interval needed to make a conversion, then the input requires a SHA.
The AD585 is a high linearity SHA capable of directly driving the analog input of the AD574A. The AD585’s fast acquisition time, low aperture and low aperture jitter are ideally suited for high-speed data acquisition systems. Consider the AD574A converter with a 35 ?s conversion time and an input signal of 10 V p-p: the maximum frequency which may be applied to achieve rated accuracy is 1.5 Hz. However, with the addition of an AD585, as shown in Figure 3, the maximum frequency increases to 26 kHz.
The AD585’s low output impedance, fast-loop response, and low droop maintain 12-bits of accuracy under the changing load conditions that occur during a conversion, making it suitable for use in high accuracy conversion systems. Many other SHAs cannot achieve 12-bits of accuracy and can thus compromise a system. The AD585 is recommended for AD574A applications requiring a sample and hold.
Figure 3. AD574A with AD585 Sample and Hold
SUPPLY DECOUPLING AND LAYOUT
CONSIDERATIONS
It is critically important that the AD574A power supplies be filtered, well regulated, and free from high frequency noise. Use of noisy supplies will cause unstable output codes. Switching power supplies are not recommended for circuits attempting to achieve 12-bit accuracy unless great care is used in filtering any switching spikes present in the output. Remember that a few millivolts of noise represents several counts of error in a 12-bit ADC.
Circuit layout should attempt to locate the AD574A, associated analog input circuitry, and interconnections as far as possible from logic circuitry. For this reason, the use of wire-wrap circuit construction is not recommended. Careful printed circuit construction is preferred.
UNIPOLAR RANGE CONNECTIONS FOR THE AD574A
The AD574A contains all the active components required to perform a complete 12-bit A/D conversion. Thus, for most situations, all that is necessary is connection of the power supplies (+5 V, +12 V/+15 V and –12 V/–15 V), the analog input, and the conversion initiation command, as discussed on the next page. Analog input connections and calibration are easily accomplished; the unipolar operating mode is shown in Figure 4.
Figure 4. Unipolar Input Connections
All of the thin-film application resistors of the AD574A are trimmed for absolute calibration. Therefore, in many applications, no calibration trimming will be required. The absolute accuracy for each grade is given in the specification tables. For example, if no trims are used, the AD574AK guarantees ?1 LSB max zero offset error and ?0.25% (10 LSB) max full-scale error. (Typical full-scale error is ?2 LSB.) If the offset trim is not required, Pin 12 can be connected directly to Pin 9; the two resistors and trimmer for Pin 12 are then not needed. If the full-scale trim is not needed, a 50 ???1% metal film resistor should be connected between Pin 8 and Pin 10.
The analog input is connected between Pin 13 and Pin 9 for a 0 V to +10 V input range, between 14 and Pin 9 for a 0 V to +20 V input range. The AD574A easily accommodates an input signal beyond the supplies. For the 10 volt span input, the LSB has a nominal value of
2.44 mV; for the 20 volt span, 4.88 mV.
If a 10.24 V range is desired (nominal 2.5 mV/bit), the gain trimmer (R2) should be replaced by a 50Ωesistor, and a 200Ωtrimmer inserted in series with the analog input to Pin 13 for a full-scale range of 20.48 V (5 mV/bit), use a 500 ??trimmer into Pin 14. The gain trim described below is now done with these trimmers. The nominal input impedance into Pin 13 is 5kΩ, and 10kΩinto Pin 14.
篇二:机电专业中英文文献翻译-模拟与数字转换器译文
Analog and Digital Transducers
As mentioned previously, considerable experience has been accumulated with analog transducers, signal conditioning, A/D converters etc. , and it is natural that the majority of current systems tend to use these techniques. However, there are a number of measuring techniques that are essentially digit in nature, and which when used as separate measuring instruments require some intrgral digtal circuitry, such as frequency counters and timing circuits, to provide an indicator output. This type of transducer, if coupled to a computer, does not necessarily require the same amount of equipment since much of the processing done by the integral circuitry could be programmed and by the computer.
Collins classifies the signals handled in control and instrumentation systems as follows:
(1) Analog, in which the parameter of the system to be measured although initially derived in an analog form by a sensor is converted to an electrical analog, either by design or inherent in the methods adopted;
(2) Coded-digital, in which a parallel digital sigal is generated, each bit radix-weighted according to some predetermined code. These are referred to in this bood as direct digital transducers;
(3) Digital, in which a function, such as mean rate of a repetitive signal, is a measure of the parameter being measured. These are subsequently referred to as frequency-domain transducers.
Some analog transducers are particularly suited to conversion to digital outputs using special techniques. The most popular of these are synchros, and similar devices, which produce a modulated output of a carrier frequency. For ordinary analog use, this output has to be demodulated to provide a signal whose magnitude and sign represent any displacement of the transducer’s moving element. Although it is possible to use a conventional A/D technique to produce a digital output while providing a high accuracy and resolution, and at a faster rate than is possible in the A/D converter method.
Direct digital transducers are, in fact, few and far between, since there do not seem to be any natural phenomena in which some detectable characteristic changes in discrete intervals as a result of a change of pressure, or change of tempreature etc.. These are many advantages in using direct digital transducers in ordinary instrumentation systems, even if computers are not used in the complete installation.
These advantages are:
(1) The ease of generating, manipulating and storing digital signals, as punched tape, magnetic tape etc. ;
(2) The need for high measurement accuracy and discrimination;
(3) The relative immunity of a high-level digital signal to external disturbances (noise);
(4) Ergonomic advantages in simplified data presentation(e. g. digital readout avoids interpretation errors in reading scales or graphs).
The most active development in direct digital transducers has been in shaft encoders, which are used extensively in machine tools and aircraft systems. High resolution and accuracies can be obtained, and these devices may be mechanically coupled to provide a direct digital output of any parameter which gives rise to a measurable physical displacement. The usual displacement of these systems is that the inertia of the instrument and encoder often limit the speed of response and therefore the operating frequencies.
Frequency domain transducers have a special part to play in online systems with only few variables to be measured, since the computer can act as part of an A/D conversion system and use its own registers and clock for counting pulses or measuring pulse width. In designing such systems, consideration must be given to the computer time required to access and process the trransducer output.
Data Line Isolation Theory
When it comes to protect data lines from electrical transients, surge suppression is often the first thing that leaps to mind. The concept of surge suppression is intuitive and there are a large variety of devices on the market to choose from. Models are available to protect every-thing from your computer to answering machine as well as those serial devices found in RS-232, RS-422 and RS-485 systems.
Unfortunately, in most serial communications systems,surge suppression is not the best choice. The result of most storm and inductively induced surges is to cause a difference in ground potential between points in a xommunications system. The more physical area covered by the system, the more likely those differences in ground potential will exist.
The water analogy helps explain this. Instead of phenomenon water in a pipe, we’ll think a little bigger and use waves on the ocean. Ask anyone what the elevation of the ocean is, and you will get an answer of zero-so common that we call it sea
level. While the average ocean elevation is zero, we know that tides and waves can cause large short-term changes in the actual height of the water. This is very similar to earth ground. The effect of a large amount of current dumped into the earth can be visualized in the same way, as a wave propa-gating outwards from the origin. Until this energy dissipates, the voltage level of the earth will vary greatly between two locations.
Adding a twist to the ocean analogy, what is the best way to protect a boat from high waves? We could lash the boat to a fixed dock, forcing the boat to remain at one elevation. This will protect against small waves, but this solution obviously has limitation. While a little rough, this comparison isn’t far off from what a typical surge suppressor is trying to accom-plish. Attempting to clamp a surge of energy to a level safe for the local equipment requires that the clamping device be able to completely absorb or redirect transient energy.
Instead of lashing the boat to a fixed dock let the dock float. Now the boat can rise and fall with the ocean swells (until we hit the end of our floating dock’s posts).
Instead of fighting nature, we’re simply moving along with it. This is our data line isola-tion solution.
Isolation is not a new idea. It has always been implemented in telephone and Ethernet equipment. For asynchronous data applications such as many RS-232, RS-422 and RS-485 systems, optical isolators are the most common isolation elements. With isolation, two different grounds (better thought of as reference voltages) can exist on opposite sides of the isolation element without any current flowing through the element. With an optical isolator, this is performed with an LED and a photosensitive transistor. Only light passes between the two elements.
Another benefit of optical isolation is that it is not dependent on installation quality. Thpical surge suppressors used in data line protection use special diodes to shunt excess energy to ground. The installer must provide an extremely low imprdance ground connection to handle this energy, which can be thousands of amps at frequencies into the tens of megahertz. A small impedance in the ground connection, such as in 1.8m (6ft) of 18 gauge wire, can cause a voltage drop of hundreds of volts -enough voltage to damage most equipments. Isolation, on the other hand, does not require an additional ground connection, making it insensitive to installation quality.
Isolation is not a perfect solution. An additional isolated power supply is required to support the circuitry. This supply may be built in as an isolated DC-DC converter
or external. Simple surge suppressors require no power source. Isolation voltages are limited as well, usually ranging from 500V to 4000V. In some cases, applying both surge suppression and isolation is an effective solution.
When choosing data line protection for a system it is important to consider all available options. There are pros and cons to both surge suppression and optical isolation, however isolation is a more effective solution for most systems. If in doubt, choose isolation.
模拟与数字转换器
前面我们已经提到,人们在模拟转换器、信号调节器和A/D 转换器等的使用上已经积累了大量的经验。因此,目前大部分的系统自然都采用这些方法时,需要用到一些积分电路,如频率计数和计时电路等来提供指示输出。另外,如果把这种转换器和电脑相连的话,就可以省去一些器材;因为很多由积分电路执行的工作可以由计算机程序代为执行。
柯林斯把在控制和测量系统中处理的信号分为以下几类:
(1)模拟式。尽管系统的被测量参数最初通过传感器得到是模拟信号,然后通过设计或采用原有的方法将模拟形式的信号转换成电模拟信号。
(2)数字码式。产生的信号是并行的数字信号,每一位的基数权重由预先编定的号码系统决定。在本书中这些仪器称作直接数字转换器。
(3)数字式。其中的函数测量参数时用到的量度标准,如对重复信号取平均值。这些仪器在后来称为频域转换器。
特别地,一些模拟转换器适合用一些特别的技术来把模拟量转化成数字输出。其中最通用的方法是同步法和相似仪器的方法,即产生载波频率的调制输出的方法。在用作普通的模拟量输出仪器时,输出量必须经过解调。解调后输出的是直流信号,直流信号的大小和方向描述了转换器运动元件的偏移。虽然使用传统的A/D转换技术可以用来产生数字信号,在提供高精度时采用这些新技术将同步输出直接变为数字输出,比用A/D转换方法更快。
直接数字转换器实际上用得很少,因为在自然现象中很少有那种由温度变化、压力变化等因素作用而产生的可测量的离散的变化量。在普通的仪器系统中使用直接数字转换器有如下优点(即使在完成安装时不使用计算机):
(1)容易产生、处理和存储信号,如打孔带、磁带等;
(2)高精度和高分辨率的需要;
(3)高阶数字信号对外部噪声的抗干扰性;
(4)在简化数据描述时的人机工程学优势(例如,数字读出器能避免读刻度或图表时的判读错误)。
在直接数字转换器中最能起作用的发展是轴编码器。轴编码器在机床和飞行系统中被广泛应用。利用这些设备能达到很高的精度和分辨率,而且这些设备能进行机动连接,给出任何可测量物理偏移的直接数字输出。这类系统通常和缺点是仪器的惯性及编码器限制了相应的速度,因而也限制了操作频率。
频域转换器在线系统(测量量较少时)有着特殊的地位。因为计算机能担当A/D转换系统的部分工作,能用它自己的寄存器和时钟来计算脉冲宽度。在这种系统和设计中必须考虑到计算机存取和处理转换器输出所需的时间。
篇三:机电专业中英文文献翻译-模拟与数字转换器
模拟与数字转换器
前面我们已经提到,人们在模拟转换器、信号调节器和A/D转换器等的使用上已经积累了大量的经验。因此,目前大部分的系统自然都采用这些技术。然而,还有很大一部分测量方法实质是数字的,在个别的测量仪中使用这些方法时,需要用到一些积分电路,如频率计数和计时电路等来提供指示输出。另外,如果把这种转换器和电脑相连的话,就可以省去一些器材;因为很多有积分电路执行的工作可以由计算机程序代为执行。
柯林斯把在控制和测量系统中处理的信号分为以下几类:
(1)模拟式。尽管系统的被测数最初通过传感器得到的是模拟信号,然后通过设计或采用原有的方法将模拟形式的信号转换成电模拟信号。
(2)数字码式。产生的信号是并行的数字信号,每一位的基数权重由预先编定的号码系统决定。在本书中这些仪器称作直接数字转换器。
(3)数字式。其中的函数是指测量参数时用到的量度标准,如对重复信号取平均值。这些仪器在后来称为频域转换器。
特别地,一些模拟转换器适合用一些特别的技术来把模拟量转换成数字输出。其中最通用的方法是同步法和相似仪器的方法,即产生载波频率的调制输出的方法。在用作普通的模拟量输出仪器时,输出量必须经过解调。解调后输出的是直流信号,支流信号的大小和方向描述了转换器运动元件的偏移。虽然使用传统的A/D转换技术可以用来产生数字信号,在提供高精度时采用这些新技术将同步输出直接变为数字输出,比用A/D转换方法更快。
直接数字转换器实际上用得很少,因为在自然现象中很少有那种由温度变化、压力变化等因素作用而产生的可测量的离散的变化量。在普通的仪器系统中使用直接数字转换器有如下优点(即使在完成安装时不使用计算机):
(1)容易产生、处理和存储信号,如打控带、磁带等;
(2)高精度和高分辨率的需要;
(3)高介数字信号对外部噪声的抗干扰性;
(4)在简化数据描述时的人机工程学优势(例如:数字读出器能避免读刻度或图表时的判度错误)。
在直接数字转换器中最能起作用的发展是轴编码器。轴编码器在机床和飞行系统中被广泛应用。利用这些设备能达到很高的精度和分辨率,而且这些设备能进行激动连接,给出任何可测量物理偏移的直接数字输出。这类系统通常的缺点是仪器的惯性及编码器限制了相应的速度,因而也限制了操作频率。
频域转换器在线系统(测量量较少时)有着特殊的地位。因为计算机能担当
A/D转换系统的部分工作,能用它自己的寄存器和时钟来计算脉冲和测量脉冲宽度。在这种系统的设计中必须考虑到计算机存取和处理转换器输出所需的时间。
自动控制的应用
虽然自动控制应用范围实际上是无限的,但是我们的讨论仅限于现代工业中常见的几个例子。
伺服机构
虽然伺服机构本身并不是一种控制的应用,但是这种装置在自动控制中却是常用的。伺服机构,或简单称“伺服”,是一种闭环控制系统,其中的被控变量是机械位置或机械运动。该机构的设计使得输出能迅速而精确地响应输入信号的变化。因此,我们能把伺服机构现象为一种随动装置。
另一种控制输出变化率或输出速度的伺服机构称为速率或速度伺服机构。
过程控制
过程控制是用来表示制造过程中多变量控制的一个术语。化工厂、炼油厂、食品加工厂、鼓风炉、轧钢机都是自动控制用于生产过程的里子。过程控制就是把有关诸如温度、压力、流量、液位、黏度、密度、成分等这样一些过程变量控制为预期值。
发电
电力工业首先关系到能量的转换与分配。发电量可能超过几千万千瓦的现代化大型电厂需要复杂的控制系统来表明许多变量的相互关系,并提供最佳的发电量。发电厂的控制一般认为是一种过程控制的应用,而且通常有多打100个操纵变量受计算机控制。
自动控制已广泛地用于电力分配。电力系统通常由几个发电厂组成。当负载波动时,电力的生产和传输要受到控制,使该系统达到运行的最低要求。此外,大多数的大型电力系统都是相互联系的,而且两系统之间的电力流动也受到控制。
数字控制
有许多加工工序,如镗床、钻床、铣削和焊接都必须以很高的精度重复进行。数字控制是一个系统,该系统使用的是称为程序的预定指令来控制一系列运行。完成这些预期工序的指令被编程代码,并且存储在如穿孔纸带、磁带或穿孔卡片等某个介质上。这些指令通常以数字形式存储,故称为数字控制。指令辨认要用工具、加工方法(如切削速度)及工具运动的轨迹(位置、方向、速度等)等参数。
运输
为了向现代化城市的各个地区提供大量的运输系统,需要大型、复杂的控制系统。目前正在进行的几条自动运输系统中有每隔几分钟的高速火车。要保持稳定的火车流量及提供舒适的加速和停站时的制动,就需要自动控制。
飞机的飞行控制是在运输领域的另一项重要应用。由于系统参数的范围的广泛以及控制之间的相互影响,飞行控制已被证明为最复杂的控制应用之一。飞机控制系统实质上常常是自适应的-,即其操纵本身要适应于周围环境。例如一架飞机的性能在低空和高空可能是根本不同的,所以控制系统就必须作为飞行高度的函数进行修正。
船舶转向和颠簸稳定控制与飞行控制相似,但是一般需要更大的功率和较低的响应速度。
张琦,杨承先.现代机电专业英语[M].北京:清华大学出版社,2005
1.
Analog and Digital Transducers
As mentioned previously, considerable experience has been accumulated with analog transducers signal conditioning, signal; conditioning, A/D converters etc., and it is natural that the majority of current systems tend to use these techniques. However, there are a number of measuring techniques that are essentially digit in nature, and which when used as separate measuring instruments require some integral digital circuitry, such as frequency counters and timing circuits, to provide an indicator output. This type of transducer, if coupled to a computer does not necessarily require the same amount of equipment since much of the processing done by the integral circuitry could be programmed and performed and performed by the computer.
Collins classifies the signals handled in control and instrumentation systems as follows:
(1) Analog, in which the parameter of the system to be measured although initially derived in an analog form by a sensor is converted to an electrical analog, either by design or inherent in the methods adopted;
(2) Coded digital, in which a parallel digital signal is generated, each bit radix weighted according to some predetermined code. These are referred to in this book as direct digital transducers;
(3) Digital, in which a function, such as mean rate of a repetitive signal, is a measure of the parameter being measured. These are subsequently referred to as frequency domain transducers.
Some analog transducers are particularly suited to conversion to digital outputs using special techniques. The most popular of these are synchros, and similar devices, which produce a modulated output of a carrier frequency. For ordinary analog use, this output has to be demodulated to provide a signal whose magnitude and sign represent any conventional A/D technique to produce a digital output, there are techniques by which the synchro output can be converted directly to a digital output while providing a high accuracy and resolution, and at a faster rate than is possible in the A/D converter method.
(1) The ease of generating, manipulating and storing digital signals, as punched tape, magnetic tape etc.;
(2) The need for high measurement accuracy and discrimination;
(3) The relative immunity of a high level digital signal to external disturbances(noise);
(4) Ergonomic advantages in simplified data presentation(e.g. digital readout avoids interpretation errors in reading scales or graphs).
The most active development in direct digital transducer has been in shaft encoders, which are used extensively in machine tools and aircraft systems. High resolution and accuracies can be obtained, and these devices may be mechanically coupled to provide a direct digital output of any parameter which gives rise to a measurable physical displacement. The usual disadvantage of these systems is that the inertia of the instrument and encoder often limit the speed of response and therefore the operating frequencies.
Frequency domain transducers have a special part to play in online systems with only few variables to be measured, since the computer can act as part of an A/D conversion system and use its own registers and clock for counting pulses or measuring pulse width. Access and process the transducer output. In designing such systems, consideration must be given to the computer time required to access and process the transducer output.
Application of Automatic Control
Although the scope of automatic control application, we will limit this discussion to examples which are commonplace in modern industry.
Servomechanisms
Although a servomechanism is not a control application, this device is commonplace in automatic control. A servomechanism, or ‘servo’ for short, is a closed-loop control system in which the controlled variable is mechanical position or motion. It is designed so that the output will quickly and precisely respond to a change in the input command. Thus we may think of a servomechanism as a following device.
Another form of servomechanism in which the rate of change or velocity of the output is controlled is known as a rate or velocity servomechanism.
Process Control
Process control is a term applied to the control of variables in a manufacturing process. Chemical plants, oil refineries, food processing plants, blast furnaces, and steel mill are examples of production processes to which automatic control is applied. Process control is concerned with maintaining at a desired value such process variables as temperature, pressure, flow rate, liquid level, viscosity, density, and
篇四:3Dmax中英文详细翻译对照
3Dmax中英文对照
参考软件:3Dmax8中文版+vray1.5中文版和3Dmax8英文版+vray1.5英文
由于任务繁重,有些相同的内容只写一遍,还望谅解。如有重复纯属糊涂and巧了。
一、右击菜单(由于有些右击菜单中在修改卷栏中也有在这就不复述)
(右击菜单左侧) (右击菜单右侧)
反转样条线: Reverse Line 孤立当前选择 : Isolate selection
设为首顶点: make first 全部解 冻 : unfreeze all
拆 分: divide 冻结当前选择 : freeze selection
绑 定: bind 按名称取消隐藏: unhide by name
取 消 绑定: Unbind 全部取消隐藏 : unhide all 工 具 1: tools 1 隐藏未选定对象: hide unselection
工 具 2: tools 2 隐藏当前选择 : hide selection 创 建 线: create line 保存 场景状态: save scene state 附 加 : attach 管 理场 景状态: mange scene states 分 离 线段: detach segment 显 示 : display
连 接 : connect 变 换 : transform 细 化 : refine 移 动 : move
细 化 连接: connect refine 旋 转 : rotate
循 环 顶点: cycle vertices 缩 放 : scale
断 开 顶点: break vertices 选 择 : select
焊 接 顶点: weld vertices 克 隆 : clone
融 合 顶点: fuse vertices 属 性 : properties
Bezier角点: Bezier corner 曲线 编辑 器: curve editor
Bezier : bezier 摄 影 表 : dope sheet
角 点 : corner 关 联 参 数: wire parameters
平 滑 : smooth 转 换 为: convert to
重 置 切线: reset tangents (展开)可编 辑样 条线: convert to editor spline
样 条 线: spline 可编 辑网 络: convert to editor mesh
线 段 : segment 可编 辑多 边形: convert to editor poly
顶 点 : vertex 可编 辑 片面 : convert to editor patch
顶 层 级: top-level 转换为 NURBS: convert to NURBS
线 : line VRAY 属 性 : VRAY porperties
曲 线 : curve VRAY场景转换器: VRAY scene converter
VRAY网格导 出: VRAY mesh export
VRAY VFB : VRAY VFB
二、修改器:mordifiers
选择: selection FFD 选择:fFFD select 网格选择:mesh select 面片选择:patch select 多边形选择:poly select
按通道选择:select by channel 样条线(来自:WwW.smhaida.Com 海达 范文 网:英文翻译中文转换器)选择:spline select 体积选择:volume select 面片/样条线编辑:patch/spline editing 横截面:cross section 删除面片:delete patch
删除样条线:delete spline
编辑面片:edit patch
编辑样条线:edit spline
圆角/切角:fillet/chamfer 车削:lathe 规格化样条线:normalize spline 可渲染样条线修改器:renderable spline modifier 曲面:surface
扫描:sweep
修剪/延伸:trim/extend
网格编辑: mesh
补洞:cap holes
删除网格:delete mesh
编辑网格:edit mesh
编辑法线:edit normals
编辑多边形:edit poly
挤出:extrude
面挤出:face extrude
multires:multires
法线修改器:normal modifier
优化:optimize
平滑:smooth
STL检查:STL check
对称:symmetry
细化:fessellate
顶点绘制:vertex paint
顶点焊接:vertex weld
动画:animation
属性承载器:attribute holder 柔体:flex
链接变换:linked xform 融化:melt 变形器:morpher
面片变形:patch deform 面片变形(WSM):patch deform(WSM)
路径变形:path deform 路径变形(WSM):patch deform(WSM) 蒙皮:skin 蒙皮变形:skin morph 蒙皮包裹:skin wrap 蒙皮包裹面片:skin wrap patch
样条线 IK 控制:spline IK control
曲面变形:surf deform
曲面变形(WSM):surf deform(WSM)
UV坐标:UV coordinates
摄影机贴图:camera map
摄影机贴图(WSM):camera map(WSM)
贴图缩放器(SWM):map scaler(WSM)
投影:projection
展开UVW:unwrap UVW
UVW贴图:UVW map
UVW贴图添加:UVW mapping Add
UVW贴图清楚:UVW mapping clear
UVW贴图变换:UVW mapping XForm
缓存工具:cache tools
点缓存:point cache
点缓存(WSM):point cache(WSM)
细分曲面:subdivision surfaces HSDS修改器:HSDSmordifier
网络平滑:
网格平滑:mesh smooth
涡轮平滑:turbo smooth
自由形式变形器:free form deformers FFD长方体:FFDBOX
FFD圆柱体:FFD cylinder
参数变形器:parametric deformers
影响区域:affect region
弯曲:bend
置换:displace
晶格:lattice
镜像:mirror
噪波:noise
Physique:physique
推力:push
保留:preserve
松弛:relax
涟漪:ripple
壳:shell
切片:slice
拉伸:stretch
球形化:spherify
挤压:squeeze
扭曲:twist
推化:taper
替换:XForm
波浪:wave
曲面:surface
置换近似:disp approx
置换网格:displace mesh
材质:material
按元素分配材质:material by element NURBS编辑:NURBS editing
置换近似:disp approx
曲面变形:surf deform
曲面选择:surface select
光能传递:radiosity
细分:subdivide
细分(WSM):sudiosity(WSM)
三、可编辑样条线修改器菜单 渲染:rendering
在渲染中启用:enable in renderer 在视口中启用:enable in viewport
生成贴图坐标:senerat mapping coords 真实世界贴图大小:real-world map size 视口:viewport
径向:radial
厚度:thichness
边:sides
角度:angle
纵横比:aspect
自动平滑:auto smooth
阈值:threshold
插值:interpolation
步数:steps
自适度:adaptive
名称选择:named selections
复制:copy
粘贴:paste
锁定控制柄:lock handles
相似:alike
区域选择:area selection
线段端点:segment end
选择方式:select by。。
显示顶点编号:show vertex number 仅选定:selected only
软选择:soft selection 使用软选择:use soft selection 边距离:edge distance
衰减:fall off
收缩:pinch
膨胀:bubble
几何体:geometry
新顶点类型:new vertex type
重定向:reorient
附加多个:attach mult
线性:linear
绑定首点:bind first
绑定末点:bind last
连接复制:connect copy
端点自动焊接:end point auto-welding 自动焊接:automatic welding
插入:insert
熔合:fuse
反转:reverse
循环:cycle
相交:crossinsert
轮廓:outline
篇五:放大器英文的中文翻译
摘要 电子产品应用的领域数字化增长,从电信系统到消费电子电器,需要高采样率的模拟-数字转换器(ADC),更高的分辨率,和更低的能耗。通过提供更快的设备和允许在一个给定的硅区域实现更复杂的功能,集成电路技术部分的发展有助于满足这些需求,但同时带来了新的挑战,其中最重要的是降低电源电压。
基于开关电容(SC)技术,线性架构已经成功利用CMOS技术实现高速高精度ADC的特点。分析电源电压的和技术扩展SC电路的影响被进行 ,并且它表明有超过几代技术的收益可以被预计。运算放大器是一个在SC电路中的中央构建模块,从而比较了拓扑结构和低电压能力。
众所周知,标准形式的SC技术不适合很低的供应电压,主要是因为开关控制电压不足。两个低压更改被调查:开关启动和切换运算放大器(OS)技术。都提出了改进电路结构。两个ADC原型使用这样的技术,而引导开关是利用在其他三个原型。
ADC是前端取样保持(S / H)的不可分割的一部分电路。在高频信号下的线性度主要是由开关利用率决定的。S / H的架构被再次重现,并且依靠开——合的方法切换线性度被研究和应用于两个原型。另一个重要的参数是采样时钟抖动,它被精确设定的时钟生成和缓冲分析且最小化。
使用并行法可以增加ADC的转换量。在双路采样技术电路级,这是一种论证方法。这被应用于S / H电路和一个线性ADC。双向采样的非理性分析被呈现。在系统中并行性被利用在一种时间交叉 ADC。并行信号路径的不匹配产生了错误,因为消除这一有干扰的采样电路和数字偏移校准已经发达。总共七个原型被提出:两个双路采样 S / H电路,一个时间交叉ADC,一个IF-sampling self-calibrated连续ADC,电流舵DAC 限变器,和两个连续ADC使用了这样的技术。
*关键词:模拟集成电路、模拟数字转换、BiCMOS,开——合开关,CMOS,双路采样,IF-sampling,低电压,运算放大器,连续模拟-数字转换器,取样保持的电路,开关电容,运算放大器开关时间交叉。
介绍
四十年来集成电路的发展一直遵循摩尔定律,根据这,硅的每平方毫米的晶体管数量每18个月翻一番。同时晶体管变得更快,这使得在数字电路中的时钟频率不断增加成为可能。这一趋势似乎将持续至少几个十年也不会放缓。因此,在不久的将来,数字电路的处理能力将继续加速增长。
对模拟电路而言,技术的改革并不一定是有益的。因此,有一种从模拟范围到数字范围去改变信号处理功能的趋势,这改变,除了允许更高级别的精度,提供了能耗和硅范围节省法,增加鲁棒性,加速了设计流程,带来了灵活性和可编程性,增加了重复使用设计的可能性。在许多应用程序中系统的输入和输出信号本质上是模拟信号,为防止呈现全数字,至少需要一个模拟和数字之间的转换接口。通常情况下,在端口处移动模拟-数字边界可增加比特率。
在电信系统中,提高比特率的趋势是基于使用广泛的带宽和更高的信噪比。同时在许多应用程序中的无线电架构涉及对软件定义无线电,主要特点之一是模拟-数字转换的边界接近天线。
由于这些趋势,因此迫切需要数据转换器提高转化率和决议。这需求性能的一部分和进化技术同时更新,但往往需求高于可提供的能力。因此,对,电路设计和创新仍有空间和需要。
集成级别增加会引出更小的芯片系统,最终目标是一个单芯片解决方案,系统芯片(SoC)。这意味着模拟和数字电路必须合成在同一个硅片上,在模拟电路设计上带来了附加的挑战,如混合信号问题和技术选择的限制。数据转换器本质上是混合信号电路且面临规模较小,甚至没有SoC同样的挑战。此外,科技的发展推动了微处理器行业,因此模拟的发展方向并不总是最好的。然而,最近的无线电信设备市场的快速增长促进了先进的混合信号技术的发展,如硅锗模块 BiCMOS。
数据转换器设计的主要挑战是降低电源电压,在金属氧化物半导体设备的短渠道影响,混合信号问题,设计和仿真工具的发展,和可测试性。在模拟-数字转换器(ADC)中,他们要求采样线性、转化率,高分辨率,功耗越来越紧同时满足需要。
在ADC中,这项工作集中于低电压问题,通过搜索和开发适应当今和未来的低电压技术和电路结构。在并行,增加对ADC的要求已经被列举,高线性度采样技术和应用ADC的原型的能力。
A / D转换器
* 1 A / D转换
模拟数字(A / D)转换可以分为两个不同的操作:采样和量化。抽样将连续时间信号转换成相应的离散时间信号,而量化将连续的振幅分布转换成一组离散的水平线,这可以用数字代码表示。
一些A / D转换器(ADC)架构,例如,Flash可以同时执行取样和量化,在某些ADC中,针对直流信号,不需要取样。然而,在高性能ADC中采样和量化通常被分开,让让两个任务的电路更加完美。此外,许多ADC的性能架构不一定需要一个单独的采样电路,通常可以通过添加一个采样电路来改进。
取样操作已经在第三章讨论,并且S / H电路的架构将在第五章进行调查。在本章的其余部分更详细地研究了量化操作和介绍最常见的高速ADC架构。还有一个偏见是最适合CMOS技术的架构。此外,重点是高速和中到高的分辨率ADC(8位或更多)。过采样ADC不在讨论之列。
* 2 Flash ADC
Flash ADC,这是最快、最简单的一个ADC架构。与同等数量的比较器相比,它执行2 n?1水平的量化。比较器的参考电压使用电阻值阶梯生成,确定满量程信号范围的正面(VREF +)和负面(VREF?)参考电压被连接。比较器的输出一起形成2 n?1位代码,下面的比较器的参考值超过信号值的所有的位是一,而上面的部分的位都是零。这种所谓的温度计代码被转换为N-bit二进制字逻辑电路,它也可以包含函数以消除一些错误(泡沫)。
由于输入信号是直接连接到比较器的输入,Flash架构是非常快,速度被比较器限制。因此,最快 报道ADC就是实现这个架构。Flash ADC也有少量延迟,一般是一到两个时钟周期。允许它用于反馈应用程序(如控制回路)。
Flash ADC的最突出的缺点是比较器的数量随位的增加呈指数增长。比较器数量的增加也增加电路的面积,以及能源消耗。因此,非常高分辨率Flash ADC是不切实际的;典型解决方法是使用七位或以下。
限制了分辨率和速度的其他问题包括非线性输入电容、位置无关的参考节点时间常数,比较器的非相干时间在大部分区域布局和比较器补偿。管理自动零补偿利用率通常是必要的。或者,通过结合平均(45,46)分布式前置可以减少偏移和输入电容,也可能是插值(47),都可以视为在前一节中讨论的信号预处理的范例。
一般每个比较器被通过平均电阻网络输出耦合到相邻的输出的前置放大器置前。因此,比较器的输入信号不是由单独前置放大器产生的,但是它是一个小区域的前置放大器
的平均输出的加权平均。比较器是由前置放大器增益抵消的,前置放大器抵消是所有的参与放大放大器的平均随机抵消补偿。
并不是每一个比较器需要有自己的前置放大器;相反,一些(通常每隔或四分之三的)放大器可以被消除,丢失的信号通过插值生成。平均和插值都没有减少比较器的数量,因此它并不显著向更高的分辨率延长flash架构。
最近,Flash ADC的主要应用程序已经存在于磁盘驱动器只读通道电路和局域网接口。通常,6位的几百兆赫采样率的分辨率是必需的。甚至千兆赫速率似乎在最先进的CMOS技术范围内(48,49)。
* 3 局限性和改进
此体系结构中的一个著名问题是重叠的内部信号的频率远高于输入信号的频率。性能结果通常开始降低,信号频率相对较低。这个问题可以通过使用一个S / H电路转换器来缓解,然而,这样往往会削弱速度优势。在分布式跟踪和保持[54]每个差分对的相同放大器都有自己的前置放大器,比起前端S / H电路,跟踪和保持具有较宽松的规格。其结果以较高的速度可以实现。
重叠和内嵌架构最初是因为双极技术的发展,由于良好的VBE匹配和双极型晶体管的高跨导实现精确的开环电路是理想的。另一方面,在MOS晶体管的偏置电压是增加分辨率的主要障碍。因此,如均值[46,55]和自校准[56]技术被用于减少偏移灵敏度。 重叠可以在许多级联电路里被实施,最小化每阶段重叠[46,55]的数量。因此,连接到输入的差分对的数量被减少,这使得晶体管的偏置到一个更大的开源电压,它通过增加跨导增加的速度。容性负载也减少了,从而使电路速度额外增加了。
折叠和内嵌体系结构的采集量能够得到改善,在延迟的时间消耗上,通过使用流水线操作,通过组合级联重叠与分布式T / H作为[57]和[56]的论证来实现。这两种设计中也使用子区域,以减少重叠的数目。
折叠和内嵌ADC的分辨率被设定为8-10位范围和从几十兆赫到一百兆赫的采样率。高达400 MS / s的采样率已经达到[58] - 是6位分辨率。虽然, CMOS的分辨率被限制在10位,但有一个例外[56],它使用背景自校准以便取消折叠放大器的偏移量。
折叠放大器结构是基于不允许低的电压运行的微分组,因为在输入信号摆动的顶部它需要至少VT +2Vdsat对。因此,许多在参考文献中描述的ADC中使用5伏电源,且不低于3伏特。
运算放大器
运算放大器是一种广泛在许多类型的模拟电路中使用的构建块。通常,第一次面临技术上的限制点,当试图提高速度或减少电路能量的功耗,。在SC技术和在此基础上的流水线ADC中,运算放大器是一个核心组成部分。
运算放大器的设计方法和各种电路拓扑结构已经被彻底覆盖在许多教科书中。因此,在此背景下提供一个全面的研究止于当前的用途;事实上这是不可能的。相反,本章试图专注于低压、高速与现代集成电路技术的设计。SC电路中运算放大器的要求被重新重视。最重要的和适合的电路拓扑结构的优点和缺点进行了比较。
*1 输出电压范围
运放的输出电压范围,如已在第2章所讨论的,对信号与噪声的比例产生重大影响。因此,在低电压和高解析度的应用中最大限度地提高电压摆幅是特别重要的。不幸的是,具有较高的信号摆幅的输出级通常不能提供非常高的输出阻抗,从而提高运算放大器级的数量。由于输出级的电流源不能被最优地大小为低噪音,高输出摆幅也可能增加噪声。
全差分运算放大器输出端的共模电压电平不会被自动确定。为了将其设置到希望的水平(通常在电源电压的中间)必须使用一个共模反馈(CMFB)电路。
*2 输入共模范围
运放的输出电压范围,如已在第2章所讨论的,对信号与噪声的比例产生重大影响。因此,在低电压和高解析度的应用中最大限度地提高电压摆幅是特别重要的。不幸的是,输出级具有较高的信号摆幅通常不能提供非常高的输出阻抗,这样提高了运算放大器的放大量。高的输出摆动幅度可能增加干扰。因为输出的电流源不能被最优为低噪音。
全差分运算放大器输出端的共模电压电平不会被自动确定。为了将其设置到希望的水平(通常在电源电压的中间),必须使用一个共模反馈(CMFB)电路。
*3 输入共模范围
SC电路通常采用反相反馈结构的运算放大器(并且是全差分,使得信号反相可以简单地通过渡线),它不需要在运算放大器输入一个大的共模电压范围。因此,低电压电路能由不具有轨对轨输入级的运算放大器构成。如果存在,单端在差分转换电路中的前端,但是,可能需要非反相结构的运算放大器配置。此外,没有一个确切已知的共模电平的全差分输入信号需要从前端阶段到以适应信号的共模电压的不确定性或改变它的一定的共模输入范围。
在SC电路中,运算放大器的输入共模电平不一定是等于输出CM水平,这通常被设置为VDD / 2,从而最大限度地提高信号摆幅。这种自由度可以用在低压电路,例如当一个NMOS输入对被采用,通过设置在CM水平接近VDD,让更多的电压裕量的输入对和尾电流源。在原则上,CM水平可以一路升高到VDD,但随后必须注意,连接到运算放大器的输入PMOS开关正向偏置。
结论 技术扩展将在接下来的几代人给SC电路带来优势,但在那之后降低信号-噪声比电源电压的效果将开始主宰晶体管维度的积极作用。甚至在这之前,最大化信号范围对利用技术扩展的好处是必要的。信号范围最大的影响了opamps,使用轨到轨输出阶段强制性。开关在适应普通的电源电压技术上没有重大困难。相反,当一个比普通电压更小的电源电压被使用或性能要求增加,技术如门电压自举或switched-opamp技术对保证足够小的开关阻力是很需要的。
本工作中,在流水线ADC中的switched-opamp技术利用率已被证实。对外部世界连接SO电路已经解决了阴极输入接口电路。所以SO技术的主要限制是被opamp切换和反馈系数降低引起的低速。因此,对要求高速的低压电路,可能更好的方法是选择性使用引导开关和opamp输入和输出中利用不同的共模信号。所以SO技术的应用在一个速度并不是最关键的参数的领域。
在宽带无线电接收器上,将信号数字化转变到中高频具有强大的吸引力。它已经证明了抽样可以通过引导开关用相对较高的线性实现。更加基本的问题是抖动,它可以通过广泛的过采样缓解。 大部分效果和独立信号漏极和信号源连接电容的消除在一个高度线性引导开关是至关重要的。这可以最容易用三倍效果的过程完成。同样,尽管随着一个较小的线性增加,也可以用标准CMOS技术被证明出来。时间交错转化率是一种方法来扩展ADC转化率technology-determined限制之外的一个独立的A/ D通道。为消除并行通道间的时间倾斜引起的非均匀采样的影响,前端S / H电路几乎是强制性的。因此,它就变成了一个速度瓶颈,通常限制并行通道的数量最多。
摩尔定律可以最有效地利用数字做事。这可以靠把模拟功能转移到数字领域实现系统级,而且使用大量的数字电路使用在模拟系统模块中以便纠正和弥补模拟电路的缺陷。在ADC中,这意味着合并校准,纠正偏移和不匹配组件的逻辑和内存。
体裁作文