作业帮 > 初中作文 > 教育资讯

伽玛射线暴

来源:学生作业帮助网 编辑:作业帮 时间:2024/09/24 11:30:33 初中作文
伽玛射线暴初中作文

篇一:伽马射线暴

伽马射线暴

伽马射线暴

伽玛射线暴(Gamma Ray Burst, 缩写GRB),又称伽玛暴,是来自天空中某一方向的伽玛射线强度在短时间内突然增强,随后又迅速减弱的现象,持续时间在0.1-1000秒,辐射主要集中在0.1-100 MeV的能段。伽玛暴发现于1967年,数十年来,人们对其本质了解得还不很清楚,

但基本可以确定是发生在宇宙学尺度上的恒星级天体中的爆发过程。伽玛暴是目前天文学中最活跃的研究领域之一,曾在1997年和1999年两度被美国《科学》杂志评为年度十大科技进展之列。 目录

基本简介

伽马射线暴简称为“伽马暴”,是宇宙中伽马射线突然增强的一种现象。伽马射线是波长小于0.1纳米的电磁波,是比X射线能量还高的一种辐射,伽马射线暴的能量非常高,所释放的能量甚至可以和宇宙大爆炸相提并论,但是持续时间很短,长的一般为几十秒,短的只有十分之几秒,而且它的亮度变化也是复杂而且无规律的。 伽马射线暴(GRBs)可以分为两种截然不同的类型,长久以来,天文学家们一直怀疑它们是由两种不同的原因产生的。更常见的长伽马暴(持续2秒到几分钟不等)差不多已经被解释清楚了。在目前的图景中,它们是在一颗高温、超大质量的沃夫—

瑞叶星(Wolf-Rayet star)坍缩形成黑洞时产生的。

虽然短伽马射线暴一瞬即逝,但现在”雨燕“每年可以捕捉到10次短伽马射线暴,为我们的研究提供了非常宝贵的资料来源。我们现在的研究认为,短伽马射线暴可能来源于一个双星体系的两颗恒星的合并以及一个黑洞的同时产生。

伽马射线暴的能源机制至今依然远未解决,这也是伽马射线暴研究的核心问题。随着技术的进步,人类对宇宙的认识也将更加深入,很多现在看来还是个谜的问题也许未来就会被解决,探索宇宙的奥秘不但是人类追求科学进步的必要,这些谜团的解开也终将会使人类自身受益。

产生原因

天文学家的以前说法:可能是由于这种伽马射线暴距离太远,无法在视觉波长范围内观测。最新一项研究揭示了其中的奥秘,星际尘埃吸收了几乎全部的可见光,但能量更高的伽马射线和X射线却能穿透星际尘埃,被地球上的望远镜捕捉到。

伽马射线暴

伽马射线暴不过大质量恒星的死亡会产生伽马暴这一观点已经得到普遍认同。天文学家认为,其中的大多数伽马暴是在超大质量恒星耗尽核燃料时发生的。当恒星的核心坍缩为黑洞后,物质喷流以接近光速的速度向外冲出。喷流从坍缩星涌过,继续向宇宙空间行进,并与先前被恒星照耀的气体相互作用,产生随着时间衰减的明亮余辉。多数伽马射线将在可见光范围内呈现出明亮光线。然而一些伽马射线暴却是黑暗状态,它们在光学望远镜中无法探测到。最新一项研究显示,黑暗伽马射线暴实际上并不是由于距离遥远而无法观测,它们无法释放光线是由于被星际尘埃吸收了大部分的可见光,这些星际尘埃团可能是恒星孕育诞生地。

曾经引发4亿年前生物大灭绝。它可能产生于雷,也参与闪电的形成旱新的研究表明,雷中释放出的伽而伽马射线可能才是闪电形成的主要原关于雷电岛×马射线可能是闪电形成的主要原因。这个猜想.四年前佛罗里达技术协因。康普顿伽马射线天文台在上世纪会的天体物理学家约瑟夫-德怀尔就90年代早期就从地面的雷电中发现了提出了。伽马射线。当时德怀尔从一些相关的学术报告伽马射线是波长小于0.1纳米的电中发现伽马射线和闪电有关系,为了证磁波,辐射能量比x射线还高。伽马射明这一关系,他建立了一个高能量辐射线在短期内突然增强就会形成射线暴.模型用来描述地球大气层电场的形成。

伽马射线暴

其能量释放相当于宇宙大爆炸。伽马射结果发现,这些在电场中的伽马射线释线暴形成的原因,到底是由两个中子星放的高速电子与大气层其他微粒发生碰碰撞时产生的还是大质量恒星在死亡撞,可以产生强大的雷鸣声.同时释放时生成黑洞的过程中产生的.至今都没出电荷。在雷雨天气中.上升气流和下有定论。但有一点是科学家们都承认的,降气流推动水分子互相作用.电场强度那就是在有巨大的宇宙能量产生时,比增大,最终释放出的电子以接近光速的如雷暴产生的过程中.会产生伽马射线.速度穿越空气。

虽然当时德怀尔的猜想神秘的闪电闪电可能是由雷暴释放的伽马射线形成的。自然也就仅限于猜想而已.最终并没有形成定论。真正可以模拟并最邻近伽马射线形成闪电模拟的.是今年日本东京理工大学和日本物理和化学研究所联合的一次研究。这个研究组派出一支伽马射线研究分队,到日本海的低空中观察在雷电中形成的伽马射线。

物理发现

伽马射线暴是1967年美国Vela卫星在核爆炸监测过程中由克莱贝萨德尔(Klebesadel)等人无意中发现的。

恒星的诞生和老恒星的死亡是联系在一起的。超大质量恒星迅速老化、爆炸,散发出的星际尘埃快速充斥于星云之中,超大质量爆炸产生的新物质也被喷发进星云之中,星云密度变得很大,孕育新的恒星诞生。在充斥着星际尘埃的星系,大量的恒星生死轮回正在发生着。由于恒星形成于星际尘埃区域,可推测包裹黑暗伽马射线暴的尘埃团可能是孕育恒星的诞生之地。

伽马射线暴

冷战时期,美国发射了一系列的军事卫星来监测全球的核爆炸试验,在这些卫星上安装有伽马射线探测器,用于监视核爆炸所产生的大量的高能射线。侦察卫星在1967

年发现了来自浩瀚宇宙空间的伽马射线在短时间内突然增强的现象,人们称之为“伽马射线暴”。由于军事保密等因素,这个发现直到1973年才公布出来。这是一种让天文学家感到困惑的现象:一些伽马射线源会突然出现几秒钟,然后消失。这种爆发释放能量的功率非常高。一次伽马射线暴的“亮度”相当于全天所有伽马射线源“亮度”的总和。随后,不断有高能天文卫星对伽马射线暴进行监视,差不多每天都能观测到一两次的伽马射线暴。

至今人们已经观测到了2000多个伽马暴。 伽马射线暴分类

伽马射线暴可以分为两种,一种是明亮伽马射线暴,是所观测到的宇宙中强度最大、最为明亮的爆炸,能够产生大量的可见光,远在数十亿光年外的地球上的望远镜能够轻易地观测到。另外一种是黑暗伽马射线暴,包含大量的伽马射线和X射线,但却几乎没有可见光,但天文学家长期困惑不解这种现象。

编辑本段伽马射线暴的原因解析

星际尘埃吸收伽马射线暴可见光,2009年6月8日,在美国天文学学会会议上美国加州大学伯克利分校丹尼尔-珀利(Daniel Perley)说:“我们相信已经揭开了黑暗伽马射线暴的成因之谜。”他和同事们通过加州帕洛马天文台直径60英寸的望远镜发现“雨燕”探测卫星曾观测的29个伽马射线暴中14个是黑暗的,无法观测到可见光波。他们进一步通过夏威夷凯克天文台的10米望远镜进行观测,结果显示它们并不是完全处于黑暗状态。这14个黑暗伽马射线暴中有3个透出微弱光线,像昏暗的余晖,其余的11个伽马射线暴虽然处于黑暗状态,但是研究小组发现了导致伽马射线暴产生的强烈爆炸所在的星系。这说明这些伽马射线暴产生的星系距离地球不会超过129亿光年,因为这已经接近了人类宇宙观测的极限。而且如果距离超过129亿光年,任何可探测的光波都会发生多普勒红移。

几次特别的伽马射线暴在1997年12月14日发生的伽马射线暴,它距离地球远达120亿光年,所释放的能量比超新星爆发还要大几百倍,在50秒内所释放出伽马射线能量就相当于整个银河系200年的总辐射能量。这个伽马射线暴在一两秒内,其亮度与除它以外的整个宇宙一样明亮。在它附近的几百千米范围内,再现了宇宙大爆炸后千分之一秒时的高温高密情形。

1999年1月23日发生的伽马射线暴比这次更加猛烈,它所放出的能量是1997年那次的十倍,这也是人类迄今为止已知的最强大的伽马射线暴。

在2009年4月23日,天文学家曾观测到迄今最遥远的伽马射线暴,它距离地球131亿光年,也是人类观测到的最遥远天体,导致该伽马射线暴发生的强烈爆炸发生在宇宙起源后不到7亿年时。研究小组评估称,黑暗伽马射线暴在宇宙早期阶段所有伽马射线暴中只占0.2%到0.7%,这也说明宇宙起源早期并没有发生非常多的恒星形成现象。

点亮地球夜空

美国宇航局最新研究显示,地球曾被50万光年之遥的强烈“巨大耀斑”瞬间照射。这种强大的能量脉冲束照亮了地球大气层。它源自于银河系对面一颗中子星的庞大磁场,中子星也被称为“软伽马射线中继器”,通常喷射低能量伽马射线,但有时其磁场重新排列时会释放巨大的能量束。这种能量束可穿越太空导致数千颗人造卫星出现故障,使地球顶端大气层电离化。据美国宇航局称,这种独特的伽马射线束非常强烈,比满月更加明亮,甚至比迄今太阳系外勘测的任何天体都明亮。

这一令人难以置信的伽马射线喷发发生于2004年12月27日,是由中子星SGR 1806-20释放的脉冲束。美国洛斯-阿拉莫斯国家实验室的大卫-帕默博士说:“这可能是天文学家一生中难得一见的天文现象,同时也是一种非常罕见的中子星事件。在过去35年里,我们仅探测到其它两次太阳系外大型耀斑喷射事件,而中子星SGR 1806-20释放的伽马射线束的强度是前者的数百倍。”该伽马射线能量束并不会对地球构成威胁,这是由于中子星SGR 1806-20距离地球非常遥远,但如果中子星距离地球较近的话,将对地球构成致命的伤害。 如果中子星距离地球仅有十几光年,将会出现严重的破坏性。天文学家认为宇宙中存在大量的中子星,位银河系内的中子星能量相对较低。 科学家指出,2008年3月19日,GRB 080319B恒星将瞄准地球释放强烈的耀斑。该伽马射线束非常明亮,人类肉眼也可观看到。美国马萨诸塞州哈佛史密逊森天体物理学研究中心的布赖恩-加恩斯勒说:“之后最大的太阳系内伽马射线?巨大耀斑?与2004年12月27日出现的伽马射线耀斑事件相比,则显得微不足道。” [1]编辑本段观测揭示

伽马暴发生在宇宙6亿3千万岁的时候,直接证实婴儿宇宙中活跃着爆发的恒星和新诞生的黑洞。“这个新发现的伽马暴打破了所有的纪录,”Berger说。“它轻易地超越了最遥远的星系和类星体。实际上,它表明,我们可以利用这些壮观的事件来找到第一代恒星和星系。”

一旦大质量恒星的核燃料用尽,塌缩成一个黑洞或者中子星,通过恒星在生命终点排出的气体外壳喷发出气体喷流,典型的伽马射线暴就发生了。这些喷流加热气体,产生在其它波段观测到的短暂余辉。“爆发的余辉提供我们关于爆发恒星和其环境的很多信息,”Leicester大学的Nial Tanvir说。“但是因为余辉消逝得如此快,我们必须快速瞄准并定位它们。”

Tanvir和同事们在三个小时的爆发时间内,用夏威夷莫纳克亚的英国红外望远镜探测了一个红外源。同时,宾州大学的Berger和Derek Fox用莫纳克亚的双子北望远镜得到了余辉的红外影像。

天文学家注意到,该源在最长波段的影像中存在,但是在最短的微米波长的影像中不存在。这一“缺失”对应的精确距离为130.35亿光年,或者红移为8.2,使得它成为人类迄今看到的最遥远的天体。前纪录保持者是去年九月才发现的,它的红移

篇二:伽马射线暴

伽玛射线暴(Gamma Ray Burst, 缩写GRB),又称伽玛暴,是来自天空中某一方向的伽玛射线强度在短时间内突然增强,随后又迅速减弱的现象,持续时间在0.01-1000秒,辐射主要集中在0.1-100 MeV的能段。伽玛暴发现于1967年,数十年来,人们对其本质了解得还不很清楚,但基本可以确定是发生在宇宙学尺度上的恒星级天体中的爆发过程。伽玛暴是目前天文学中最活跃的研究领域之一,曾在1997年和1999年两度被美国《科学》杂志评为年度十大科技进展之列。伽马射线暴是宇宙中发生的最剧烈的爆炸,理论上是巨大恒星在燃料耗尽时塌缩爆炸或者两颗邻近的致密星体(黑洞或中子星)合并而产生的。伽马射线暴短至千分之一秒,长则数小时,会在短时间内释放出巨大能量。

研究历史 20世纪60年代,美国发射了船帆座卫星,上面安装有监测伽玛射线的仪器,用于监视苏联和中国进行核试验时产生的大量伽玛射线。1967年这颗卫星发现了来自宇宙空间的伽玛射线突然增强,随即又快速减弱的现象,这种现象是随机发生的,大约每天发生一到两次,强度可以超过全天伽玛射线的总和,并且来源不是在地球上,而是宇宙空间。由于保密的原因,关于伽玛射线暴的首批观测资料直到1973年才发表,并很快得到了苏联Konus卫星的证实。

由于伽玛暴的持续时间非常短暂,而且方向不好确定,起初对伽玛暴的研究进展十分缓慢,连距离这样的基本物理量都难以测定,1980年,基于Ginga卫星的观测结果,许多人相信伽玛射线暴是发生银河系中的一种现象,成因与中子星有关,并围绕中子星建立起数百个模型。20世纪80年代中期,美籍波兰裔天文学家玻丹·帕琴斯基提出,伽玛射线暴发生在银河系外,是位于宇宙学距离上的遥远天体,然而这种观点并没有得到普遍认可。

1991年美国发射了康普顿伽玛射线天文台(CGRO),这颗卫星的八个角上安装了八台同样的仪器BASTE,能够定出伽玛射线暴的方向,精度大约为几度,几年时间里,对3000余个伽玛暴的系统巡天发现,伽玛射线暴在天空中的分布是各向同性的,支持了伽玛射线暴是发生在遥远的宇宙学尺度上的观点,并且引发了帕钦斯基与另一位持相反观点的科学家拉姆的大辩论。

如果伽玛射线暴确实位于宇宙学尺度上,那么由它的亮度可以推断,伽玛暴必定具有非常巨大的能量,往往在几秒时间里释放出的能量就相当于几百个太阳一生中所释放出的能量

总和,是人们已知的宇宙中最猛烈的爆发,例如1997年12月14日发生的一次伽玛暴,距地球120亿光年,在爆发后一两秒内,其亮度就与除它以外的整个宇宙一样明亮,它在50秒内释放出的能量相当于银河系200年的总辐射能量,比超新星爆发还要大几百倍。在它附近的几百千米范围内,再现了宇宙大爆炸后千分之一秒时的高温高密情形。而1999年1月23日发生的一次伽玛暴比这还要猛烈十倍。

1996年,意大利和荷兰合作发射了BeppoSAX卫星,这颗卫星能够准确地测定伽玛射线暴的方位,定位精度约为50角秒,这就为地面上的望远镜在伽玛暴未消逝之前寻找其光学对应体提供了强有力的支持。在它的帮助下,天文学家们率先发现了1997年2月28日爆发的一个伽玛暴的光学对应体,称为伽玛暴的“光学余辉”,后来又陆陆续续地发现了数个类似的余辉,不仅有可见光波段的,也有射电波段,X射线波段,并且还证认出了伽玛暴的宿主星系,对宿主星系红移的观测证实,伽玛暴远在银河系以外,是宇宙学距离上的天体,余辉的发现使人们能够在伽玛暴发生后数月甚至数年的时间里对其进行持续观测,大大推动了伽玛暴的研究。

物理发现 伽马射线暴是1967年美国Vela卫星在核爆炸监测过程中由克莱贝萨德尔(Klebesadel)等人无意中发现的。

恒星的诞生和老恒星的死亡是联系在一起的。超大质量恒星迅速老化、爆炸,散发出的星际尘埃快速充斥于星云之中,超大质量爆炸产生的新物质也被喷发进星云之中,星云密度变得很大,孕育新的恒星诞生。在充斥着星际尘埃的星系,大量的恒星生死轮回正在发生着。由于恒星形成于星际尘埃区域,可推测包裹黑暗伽马射线暴的尘埃团可能是孕育恒星的诞生之地。

冷战时期,美国发射了一系列的军事卫星来监测全球的核爆炸试验,在这些卫星上安装有伽马射线探测器,用于监视核爆炸所产生的大量的高能射线。侦察卫星在1967年发现了来自浩瀚宇宙空间的伽马射线在短时间内突然增强的现象,人们称之为“伽马射线暴”。由于军事保密等因素,这个发现直到1973年才公布出来。这是一种让天文学家感到困惑的现象:一些伽马射线源会突然出现几秒钟,然后消失。这种爆发释放能量的功率非常高。一次

伽马射线暴的“亮度”相当于全天所有伽马射线源“亮度”的总和。随后,不断有高能天文卫星对伽马射线暴进行监视,差不多每天都能观测到一两次的伽马

射线暴。

至今人们已经观测到了2000多个伽马暴。

现象研究 伽马射线暴伽马射线暴简称为“伽马暴”,是宇宙中

伽马射线突然增强的一种现象。伽马射线是波长小于0.01纳米的电磁波,是比X射线能量还高的一种辐射,伽马射线暴的能量非常高,所释放的能量甚至可以和宇宙大爆炸相提并论,但是持续时间很短,长的一般为几十秒,短的只有十分之几秒,而且它的亮度变化也是复杂而且无规律的。

伽马射线暴(GRBs)可以分为两种截然不同的类型,长久以来,天文学家们一直怀疑它们是由两种不同的原因产生的。更常见的长伽马暴(持续2秒到几分钟不等)差不多已经被解释清楚了。在此图景中,它们是在一颗高温、超大质量的沃尔夫·拉叶星(Wolf-Rayetstar)坍缩形成黑洞时产生的。

虽然短伽马射线暴一瞬即逝,自2011年在“雨燕望远镜”每年可以捕捉到10次短伽马射线暴,为我们的研究提供了非常宝贵的资料来源。我们的研究认为,短伽马射线暴可能来源于一个双星体系的两颗恒星的合并以及一个黑洞的同时产生。

伽马射线暴的能源机制至今依然远未解决,这也是伽马射线暴研究的核心问题。随着技术的进步,人类对宇宙的认识也将更加深入,很多现在看来还是个谜的问题也许未来就会被解决,探索宇宙的奥秘不但是人类追求科学进步的必要,这些谜团的解开也终将会使人类自身受益。

主要特征

伽马射线(3)伽玛射线暴的持续时间一般在0.1秒到

1000秒左右,以2秒为界,大致可以分为长暴和短暴两类,典型的持续时间分别为30秒和0.3秒。时变的轮廓比较复杂,往往具有多峰的结构。伽玛射线暴在天空中的分布是各向同性的,但远距离的伽玛射线暴明显少于近距离的,显示出非均匀各向同性,可以被膨胀宇宙学模型所支持,表明伽玛射线暴是发生在宇宙学距离上的。

伽玛射线暴爆发过后会在其它波段观测到辐射,称为伽玛射线暴的余辉。根据波段不同可分为X射线余辉、光学余辉、射电余辉等。余辉通常是随时间而指数式衰减的,X射线余辉能够持续几个星期,光学余辉和射电余辉能够持续几个月到一年。

具体分类 伽玛暴有两类,短暴(小于2秒)与长暴(大于2秒)。

长暴被普遍认为是“超新星的类似物”,标志着50至100倍于太阳的恒星的毁灭性爆发。当这样一颗庞大的恒星爆炸时,它会留下一个黑洞,并将这一信息以伽玛射线的形式扫过宇宙。内在的物理机制首先由加州大学的物理学家StanWoosley博士提出并发展成形,而他的“坍缩星”模型被认为是解释长暴的主流理论。

短暴更为让人迷惑。它们的起落时间非常短,不会是超新星,而爆发的能量并不足以构成恒星的爆发。许多研究者认为,它们是由超致密的中子星(可能也是中子星与黑洞)碰撞产生的。两种情况都会产生另一个黑洞。然而陪审团仍旧缺席,而研讨会上的辩论必然是活跃的。

产生原因

伽马射线暴(3)关于伽玛射线暴的成因,有人猜测它是两个致密天体如中子星或黑洞的合并产生的,也有观点认为它是在大质量恒星演化为黑洞的

过程中产生的。

1998年发现伽玛暴GRB 980425与一个超新星SN Ib/Ic 1998bw 相关联。这是一个重要的发现,暗示伽玛暴的成因可能是大质量恒星的死亡。2002年,一个英国的研究小组研究了由XMM-牛顿卫星对2001年12月的一次伽玛暴的长达270秒的X射线余辉的观测资料,发现了伽玛暴与超新星有关的证据,发表在2002年的《自然》杂志上。进一步的研究揭示,普通的超新星爆发有可能在几周到几个月之内导致伽玛射线暴。大质量恒星的死亡会产生伽玛暴这一观点已经得到普遍认同。

爆发历史

星系一、星际尘埃吸收伽马射线暴可见光,2009年

6月8日,在美国天文学学会会议上美国加州大学伯克利分校丹尼尔-珀利(DanielPerley)说:“我们相信已经揭开了黑暗伽马射线暴的成因之谜。”他和同事们通过加州帕洛马天文台直径60英寸的望远镜发现“雨燕”探测卫星曾观测的29个伽马射线暴中14个是黑暗的,无法观测到可见光波。他们进一步通过夏威夷凯克天文台的10米望远镜进行观测,结果显示它

篇三:最强伽马射线暴 伴随超新星爆发

据国外媒体报道,近日天文学家们注意到在宇宙深处发生了一次强烈的爆发事件。这是有记录以来探测到的强度最大的伽马射线暴(GRB)事件,这一事件让科学家们重新思考现有的有关这种爆发事件的形成机制理论是否需要修正。

一般认为,伽马射线暴是由大质量恒星突然塌缩后形成的黑洞所驱动的。黑洞的形成会驱使大量相对论性粒子穿越塌缩物质,形成剧烈的冲击波,并引发伽马射线辐射。伽马射线暴被认为是相比超新星爆发更加剧烈的一种现象,但在这一起爆发事件中,GRB 130427A爆发时还同时伴随着超新星爆发,这是不同寻常的。 这次事件另外值得一提的便是,此次有空前数量的地面和空间观测设备对其开展了详细的观测。当此次爆发事件发生时,美国宇航局的雨燕伽马射线探测器以及费米伽马射线空间望远镜以及同时探测到了其信号,随后宇航局便立即将预警信号发送给地面观测设备,如光学响应快速望远镜(RAPTOR)系统等,以便随时追踪事件进展。

美国宇航局天体物理学部门主管保罗·赫兹(Paul Hertz)表示:“一般来说大约每100年才会出现1-2次这样的事件,因此当它发生时我们正好拥有完备的设备来开展详尽的观测,这非常幸运。”

由于GRB 130427A相对较近的位置,加上参与此次观测行动的设备数量之多,此次爆发事件将有望提供有关伽马射线暴的大量关键信息。

朱利安·奥斯博恩(Julian Osborne)是莱斯特大学的雨燕探测器小组负责人,他说:“雨燕探测器的快速反应能力让我们得以收集到很多有关GRB意想不到的全新信息,这一最新的爆发事件所提供的有力证据将确保我们此前对这一现象所提出的基本理论是正确的。”

不过,尽管天体物理学家们还需要很长时间才能处理完此次收集的数据,但此次事件已经在我们对GRB现象的理解方面给出了一些不同寻常的线索。例如:费米空间望远镜的数据显示,当来自GRB爆发的可见光波段信号达到峰值时,高能伽马射线信号也出现了一个尖锐的峰。在能量为95 GeV处,这一伽马射线数据达到顶峰,这是迄今在GRB爆发事件中观察到能量最高的一例。

篇四:持续不足1秒伽马射线暴可能毁灭地球生命

持续不足1秒伽马射线暴可能毁灭地球生命(图)

2011年10月09日07:19腾讯科技[微博]悠悠/编译我要评论(98)

字号:T|T

[导读]目前,最新一项研究表明,来自星系碰撞产生的伽马射线暴将导致地球生物灭绝,甚至这种伽马射线暴仅持续不足1秒,但对地球生命构成的损害却是致命的。

腾讯科技讯(悠悠/编译) 据美国太空网站报道,日前,美国科学家最新研究显示,地球生命的持续性取决于其它星系的爆炸事件,诸如两颗恒星碰撞释放强烈太空放射线对于地球物种消亡事件具有重要影响。

转播到腾讯微博

两颗恒星碰撞产生的伽马射线暴可释放数吨高能量伽马射线进入太空,研究人员发现像这样的爆炸将耗竭地球臭氧层。破坏臭氧层将导致紫外线抵达地球表面,紫外线能够改变地球生物的基因。

两颗恒星碰撞产生的伽马射线暴可释放数吨高能量伽马射线进入太空,研究人员发现像这样的爆炸将耗竭地球臭氧层。破坏臭氧层将导致紫外线抵达地球表面,紫外线能够改变地球生物的基因。目前,研究人员开始通过化石记录来研究分析伽马射线暴对地球生物灭绝事件构成的影响。

美国堪萨斯州华盛本大学研究员布莱恩-托马斯(Brian Thomas)发表声明称,我们发现一种极为短暂的伽马射线暴可能比持续时间较长的另一种伽马射线暴更具威胁性。放射持续时间并不是放射量大小的决定因素。这项研究报告将发表在10月9日在明尼阿波里斯市召开的美国地质学会年度会议上。

伽马射线暴具有两种形式:持续时间较长、较为明亮和持续时间较短的伽马射线暴,后者持续时间甚至不足1秒,却能释放出比前者更多的放射线。如果像这样的伽马射线暴出现在银河系内部,对地球构成的放射性危害将更加持久。释放的放射线可抵达地球大气层,导致自由氧原子和氮原子碰撞在一起,并部分结合形成叫做一氧化二氮的摧毁臭氧化合物。一氧化二氮在大气层中可长时间存在,可对臭氧层持续进行破坏,直至它们像雨点一样从空中降落下来。

这种短暂伽马射线暴可能是密集中子星或者黑洞发生碰撞产生的,研究人员估计像这样规模的碰撞可能在任何给定星系中每1亿年出现一次。按照这一速率,地球在其45亿年历史中曾遭受了多次短暂伽马射线暴。

臭氧层遭受破坏将对地球生命造成许多影响,放射线将对地球食物链的植物和动物构成肆虐破坏,很可能导致全球范围内的物种灭绝事件。

美国宇航局雨燕人造卫星收集的增强和累积数据观测到其它星系中存在伽马射线暴,其释放的短暂伽马暴可对地球生命构成威胁。目前,研究人员正在之前伽马射线暴的证据,其中包括:仅在放射性事件轰击地球形成的特殊元素,例如:较重的铁元素。

目前,托马斯正与古生物学家协同研究化石记录物种灭绝事件中重铁元素的相关等级。

暗物质:费米伽马射线探测器发现正电子异常

2011年09月15日07:10腾讯科技[微博]Everett/编译我要评论(3)

字号:T|T

[导读]科学家使用费米伽马射线空间望远镜探测近地空间的正电子分布情况,认为额外增加的正电子或存在暗物质参与。

腾讯科技讯(Everett/编译)据国外媒体报道,美国斯坦福大学直线加速器研究中心的科学家所领导的研究小组认为,寻找暗物质的踪迹,可以通过一个更“聪明”的办法,即利用地球本身作为一个“科学仪器”,再由位于轨道上的以美国宇航局为主要领导方的费米伽马射线空间望远镜进行观测。从2009年开始,科学家就发现了一个惊人的现象:宇宙射线中反物质粒子数量过剩,这可能就是一种暗物质所表现出的迹象特征。该项研究成果已经发表在《物理评论快报》期

刊上,虽然并没有解决这些额外的正电子来自何处的问题,但是这个发现代表了一个对先前研究成果的确认,使得科学家将延长观测这些正电子异常的现象。 转播到腾讯微博

艺术家绘制的天鹅X-3伽马射线示意图

图像中,紫色区域包含了正电子,而电子却被地球的主体结构所闭塞,在橙色的区域中,只有电子存在,而正电子却不能进入该区域,最后的绿色区域,则完全脱离了地球主体的影响,对正电子和电子而言,都是可以自由进出的。 转播到腾讯微博

近地空间正负电子分布图像与地球磁场影响

在此之前,由俄罗斯与欧洲联合研制的PAMELA探测器在天体物理学上就掀起了一阵波澜。该探测器全称为“反物质-物质探测与轻核天体物理学探测平

台”,主要研究方向为日地空间环境以及太阳系范围内宇宙空间的高能粒子,并发现了在地球外层空间中两层范艾伦辐射环之间存在着反物质粒子分布,这也使得科学家幻想着利用这些反物质来加速未来的宇宙飞船。但是,在该项研究中,科学家发现:宇宙中出现的额外正电子-电子反物质对,来自宇宙神秘的天体物理源,比如,脉冲星,或者一个更奇特的发射源。科学家也猜测其可能产生于暗物质粒子的湮灭。

而这两个来源是一个有理论支持的观点,在脉冲星的强大的磁场中,可以认为是一种“磁场大漩涡”,结构上未知的复杂性,使得暗物质粒子在通过这些磁场的时候,受到强引力的作用,这些影响对暗物质粒子而言是巨大的,这个理论对之后的星系形成以及宇宙结构上的作用有着非常大的导向性。

根据斯坦福直线加速器研究中心的理论物理学家和暗物质专家迈克尔佩斯金(Michael Peskin)认为:欧洲PAMELA暗物质探测器研究成果的确认对天体物理学而言,是非常重要的,不论它是否是暗物质,现在并不是每个人都能接受PAMELA暗物质探测器所得到的结果,并且甚至怀疑结果的真实性。由于美国宇航局的费米伽马射线空间望远镜主要探测的对象是宇宙伽马射线,该射线是宇宙中已知的具有最高能量光子发射的射线,具有极强的穿透能力。

因此,天体物理学家并不需要对探测到的信息进行太多的过滤处理,可以使用伽马射线探测器直接对正电子异常现场进行探测,并可以发现它们。对此,位于斯坦福大学的直线加速器研究中心以及卡夫林研究所的粒子天体物理学家和宇宙学家斯特凡(Stefan Funk)认为:费米伽马射线空间望远镜并不是一个完美的电子和正电子探测仪器,探测器所携带的大视场望远镜也不是设计来区分电子和正电子的,实际上,电子和正电子是非常难以区分的,这是因为该空间望远镜是处于地球上空340英里的轨道上,但是该空间望远镜取得的数据还是具有非常大的应用价值,斯特凡带领研究小组也分析了当前的结果。

伽玛射线暴

另一名来自美国科维理粒子天体物理学与宇宙学研究所的教授罗杰罗姆

(Roger Romani)指出:美国宇航局的费米伽马射线探测器实际上并没有做出具体的发现,这是因为地球本身就具有磁场,我们所知道磁场的特性就是能影响电子的轨迹,当来自宇宙空间各个方向的电子和正电子接近地球磁场附近时,自然弯曲的地球磁场以及地球巨大的体积就会改变电子的运动方向,并确定这些电子未来的路径。

由于地球磁场以及巨大体积的作用,这就等于告诉了伽马射线探测器,在地球周围的宇宙空间中,哪儿可以探测到电子或者正电子的存在。所以,我们利用地球磁场以及体积因素在其中的作用,我们就能选择出电子和正电子正确的运动轨迹。

卡夫林研究所的粒子天体物理学家和宇宙学家斯特凡认为:在正电子异常分布的研究中,研究生沃里思(Warit Mitthumsiri)以及科维理粒子天体物理学与宇宙学研究所博士后研究员(Justin Vandenbroucke)所作的努力值得赞扬。地球本身就是一个“探测装置”,我们可以利用好这个特点。另外,美国宇航局伽马射线探测器的分析团队争取到更多的机会拓展自己的探测范围。对地球磁场

进行分析,是一个非常有意义的过程,国际地球物理学家团队曾绘制出了地球磁场分布的详细结构图。

此外,在之前对地球高层大气的研究中 ,使用的探空气球进行这项实验,但是探空气球的高度显然没有伽马射线空间望远镜的轨道来得高,所以也没有产生出非常大的研究成果。而使用了伽马射线空间望远镜,我们基本上可以覆盖整个地球,这就是我们为什么会使用美国宇航局的伽马射线探测器进行这项研究的一个原因。

参与该项研究的研究生沃里特(Warit Mitthumsiri)希望正确看待伽马射线探测器的结果,并非是不正确的。有些研究人员认为:对于正电子的探测,我们以及Pamela探测器所探测到的正电子分布是在大量宇宙射线背景粒子的条件下,其中存在着较大的误差。正因为如此,我们需要用两个独立的技术减去背景值,这样就能和真实情况相符合。

图中显示了地球磁场以及地球巨大的体积改变近地空间粒子的分布情况,其中,红色的实线表示的是电子的轨迹,而蓝色的虚线表示的是正电子的轨迹。

目前,争论的焦点在于,这些正电子异常分布的源头在哪儿,如果暗物质参与了这个过程,那么Pamela探测器和费米空间望远镜的研究团队发现的正电子就是一种暗物质的标志物,其被称为弱相互作用大质量粒子(WIMP)。该粒子是一种理论上预言的粒子,被认为与暗物质密切相关。在若干个实验室中,比如CAPRICE、AMS-01研究项目,科学家发现该正电子存在于其他粒子中,并具有超过7GeV的能量,或者十亿电子伏特。PAMELA探测器测量的结果显示其可达到100 GeV的能量,但是,现在通过伽马射线探测器发现正电子能量可达到200 GeV,这是有史以来探测到的最高能量值。

由于当前理论的预言,多余的正电子能量将直接关系到弱相互作用大质量粒子(WIMP),这将表面,神秘的暗物质粒子应该具有某种特性,并且具有质量,这个消息对粒子物理学家而言,是个不错的消息。隶属于法国国家科学研究中心的安锡勒维厄(Annecy-le-Vieux)粒子物理实验室理论物理学家帕斯夸莱

(Pasquale Serpico)认为:费米伽马射线探测器的结果,是一个非常强烈的暗物质信号,较PAMELA探测器而言,其结果具有很高的价值。

美国费米国家加速器实验室的理论物理学家丹胡珀(Dan Hooper)表示:“我可能不太同意理论物理学家帕斯夸莱的观点,更倾向于暗物质并不是这些正电子异常现象的来源。目前,科学家对暗物质的解释已经变得非常混乱,而正电子的主要来源,最有可能是脉冲星。但是,与此同时,纽约大学和哈佛大学的研究人员正在试验在200GeV或者更高能量条件下,暗物质模型是否可以支持正电子的存在。在该模型中,正电子允许被赋予能量,可以高达数百GeV的能量,即使暗物质并不是这些正电子的源头,我们依然要考虑这种可能性。

如果是暗物质导致了这些正电子异常的情况,那其中的问题将比脉冲星源头理论更深,更棘手。但是,现在还没有理论能区分这两个源头之间的关系,根据哈佛大学的研究人员芬克拜纳(Finkbeiner)估计:在将来还会发现具有更高能

篇五:伽马射线暴,射杀宇宙生命

龙源期刊网 .cn

伽马射线暴,射杀宇宙生命

作者:

来源:《科学24小时》2015年第04期

谁是太空中最厉害的“杀手”?伽马射线暴!来自耶路撒冷希伯来大学的物理学家发现,伽马射线暴能够杀死一定范围内的宇宙生命。更致命的是,伽马射线暴还会定期发生,这大大延缓了宇宙生命进化成高级物种的进程。

伽马射线暴是宇宙中发生的最剧烈的爆炸,理论上是由巨大恒星在燃料耗尽时塌缩爆炸或者两颗邻近的致密星体(黑洞或中子星)合并而产生的,其强大的辐射可破坏生命体的DNA,并导致行星失去大气层。最新的评估认为,伽马射线暴可能清除了大约90%的星系空间,而银河系也曾遭受过它的侵袭。5亿年前左右,它可能还袭击过地球,导致了大量生命的灭绝。科学家认为,地球生命在未来可能还会面临同样的命运。

初中作文