作业帮 > 高中作文 > 教育资讯

科学家爱因斯坦简介

来源:学生作业帮助网 编辑:作业帮 时间:2024/09/23 19:23:31 高中作文
科学家爱因斯坦简介高中作文

篇一:爱因斯坦 个人简介

爱因斯坦

A.爱因斯坦(1879~1955),是20世纪最伟大的自然科学家,物理学革命的旗手。1879年3月14日生于德国乌耳姆一个经营电器作坊的小业主家庭。一年后,随全家迁居慕尼黑。父亲和叔父在那里合办一个为电站和照明系统生产电机、弧光灯和电工仪表的电器工厂。在任工程师的叔父等人的影响下,爱因斯坦较早地受到科学和哲学的启蒙。1894年,他的家迁到意大利米兰,继续在慕尼黑上中学的爱因斯坦因厌恶德国学校窒息自由思想的军国主义教育,自动放

弃学籍和德国国籍,只身去米兰。1895年他转学到瑞士

阿劳市的州立中学;1896年进苏黎世联邦工业大学师范

系学习物理学。1900年毕业。由于他的落拓不羁的性格

和独立思考的习惯,为教授们所不满,大学一毕业就失

业,两年后才找到固定职业。1901年取得瑞士国籍。1902

年被伯尔尼瑞士专利局录用为技术员,从事发明专利申

请的技术鉴定工作。他利用业余时间开展科学研究,于

1905年在物理学三个不同领域中取得了历史性成就,特

别是狭义相对论的建立和光量子论的提出,推动了物理

学理论的革命。同年,以论文《分子大小的新测定法》

取得苏黎世大学的博士学位。1908年兼任伯尔尼大学编

外讲师,从此他才有缘进入学术机构工作。1909年离开

专利局任苏黎世大学理论物理学副教授。1911年任布拉

格德语大学理论物理学教授,1912年任母校苏黎世联邦

工业大学教授。1914年,应M.普朗克和W.能期脱的邀请,回德国任威廉皇帝物理研究所所长兼柏林大学教授,直至1933年。1920年应H.A.洛伦兹和P.埃伦菲斯物(即厄任费斯脱)的邀请,兼任荷兰莱顿大学特邀教授。回德国不到四个月,第一次世界大战爆发,他投入公开的和地下的反战活动。他经过8年艰苦探索,于1915年最后建成了广义相对论。他所作的光线经过太阳引力场要弯曲的预言,于1919年由英国天文学家A.S.爱丁顿等人的日全食观测结果所证实,全世界为之轰动,爱因斯坦和相对论在西方成了家喻户晓的名词,同时也招来了德国和其他国家的沙文主义者、军国主义者和排犹主义者的恶毒攻击。1933年1月纳粹攫取德国政权后,爱因斯坦是科学界首要的迫害对象,幸而当时他在美国讲学,未遭毒手。3月他回欧洲后避居比利时,9月9日发现有准备行刺他的盖世太保跟踪,星夜渡海到英国,10月转到美国普林斯顿,任新建的高研究院教授,直至1945年退休。1940年他取得美国国籍。1939年他获悉铀核变及其链式反应的发现,在匈牙利物理学家L.西拉德推动下,上书罗斯福总统,建议研制原子弹,以防德国占先。第二次世界大战结束前夕,美国在日

本两个城市上空投掷子弹,爱因斯坦对此强烈不满。战后,为开展反对核战争的和

平运动和反对美国国内法西斯危险,进行了不懈的斗争。1955年4月18日因主动脉瘤破裂逝世于普林斯顿。遵照他的遗嘱,不举行任何丧礼,不筑坟墓,不立纪念碑,骨灰撒在永远对人保密的地方,为的是不使任何地方成为圣地。

1895年16岁时的爱因斯坦。他刚决定离开德国的学校,到意大利去和家人团聚,部分也是为了逃避在德国军队服役。这张照片拍摄后大约6个月后,他就正式放弃了他的德国国籍。

二、科学成就

1.早期工作

爱因斯坦早期的工作主要在热力学和统计物理方面,在1900—1904年间,他每年都发表一篇论文发表在德国《物理学杂志》。这些早期的工作为他在1905年辐射理论和分子动理论方面的重大突破奠定了基础。

2.1905年的奇迹

1905年,爱因斯坦在科学史上创造了一个无先例的奇迹。这一年他写了6篇论文,在3月到9月这半年中,利用在专利局每天8小时工作以外的时间,在三个领域作出了四个有划时代意义的贡献。分别是:

(1)光量子论,提出光量子假说。

(2)分子动理论,1905年4月、5月、12月他发表了三篇有关布朗运动的论文,为解决半个多世纪来科学界和哲学界争论不休的原子是否存在的问题做出了突出贡献。

(3)创立狭义相对论

爱因斯坦写了一篇开创物理学纪元的长论文《论动体的电动力学》,完整地提出狭义相对性理论。这是他10年酝酿和探索的结果,它在很大程度上解决了19世纪末出现地古典物理学的危机,推动了整个物理学理论的革命。

“我有时自问,为什么我会是那个发现相对论的人。我想原因在于,一个正常的成年人绝不会停下来思考有关空间和时间的问题。这些是……小孩子想的东西。但当我长大成人以后,我才开始对空间和时间产生疑问。自然,我要比一个孩子思考得更深入一点。?

阿尔伯特〃爱因斯坦

(4)质能相当性

1905年9月,爱因斯坦写了一篇短文《物体的惯性同它所含的能量有关吗?》,作为相对论的一个推论,揭示了质量(m)和能量(E)的相当性:E=mc2,并由此解释了放射性元素(如镭)所以能释放出大量能量的原因。质能相当性是原子核物理学和粒子物理学的理论基础,也为40年实现的核能的释放和利用开辟了道路。

3.量子论的进一步开拓

爱因斯坦的光量子论的提出,遭到几乎所有老一辈物理学家反对。尽管如此,他依然孤军奋战,坚持不懈地发展量子理论。他把量子概念扩展到物质内部振动、光化学现象及统计物理学的研究中,在许多领域中做出了开拓性成就。

刚开始在专利局工作的爱因斯坦。他在那里工作的7年时间是他一生中成果最多的时期。1905年被称为爱因斯坦的“非凡的一年”,因为那年他撰写了数量和质量都相当可观的著作。

4.广义相对论的探索

狭义相对论建立后爱因斯坦并不感到满足,力图把相对性原理的适用范围推广到非惯性系。他从伽利略发现的引力场中一切物体都具有同一加速度(即惯性质量同引力质量相等)这一古老实验事实找到了突破口,于1907年提出了等效原理,此后经过曲折的探索终于1915年完成了被公认为人类思想史中最伟大的成就之一的广义相对论。

在1915年到1917年的3年中是爱因斯坦科学成就的第二个高峰时期,类似于1905年,他也在三个不同领域中分别取得了历史性成就。除了1915年最后建成了被公认为人类思想史中最伟大的成就之一的广义相对论以外,1916年在辐射量子论方面又作出了重大突破,1917年双开创了现代科学的宇宙学。

?这是自牛顿时代以来与引力理论有关的最重要成果,是人类思想的最高成就之一。?

皇家学会主席J.J.汤姆孙,在讨论证实受因斯坦理论的日食照片的会议上所说的话

?爱因斯坦的深刻本质藏在他的质朴个性之中:而他科学的本质藏在他的艺术性之中——他对美的非凡感觉。?

引自巴内什〃霍夫曼:《爱因斯坦》

?他最出名的当然是他的相对论,那给他带来了世界性的声誉。但伴随名声而来的是一种爱因斯坦感到难以理解的盲目崇拜。令他惊讶的是,他成为一种活生生的神话,一个真实的民族英雄。他被人看作一个奇迹,并得到皇室人员、政治家和其他名人的招待,公众和新闻界把他当作一个电影明星而不是科学家。?

引自巴内什〃霍夫曼:《爱因斯坦》

?科学理论家是不值得羡慕的因为大自然……是对他工作的一个铁面无私而且不太友善的评判者。它从来不会对一种理论说‘是’。它至多说‘也许’,而在大多数下只是说‘不’。?

引自爱因斯坦为诺贝尔奖获得者卡默林格-翁内斯教授的纪念册上所写的评语 ?我从事科学研究的动机,来自一种想要了解自然奥秘的无法制的渴望,而不是别的什么目的。我对正义的热爱以及为人类生活状况的改善而努力奋斗,则与我的科学兴趣无关。?

引自爱因斯坦的书信,1949年

?在曼长的生涯中我所懂得的一件事就是:我们所有的科学发现与真实的物质世界相比,还是相当原始和幼稚的——但它仍然是我们所拥有的最为珍贵的东西。?

阿尔伯特〃爱因斯坦

?为了惩罚我对权威的蔑视,命运使我自己成为一个权威。?

阿尔伯特〃爱因斯坦

?对于一个毕生努力追求一点真理的人来说,如果他看到有别人真正理解并欣赏自己的工作,那就是最美好的回报了。?

引自爱因斯坦写给一个美国学生的信,这位学生在信中告诉爱因斯坦他是多么地仰慕他

5.对统一场论的漫长而艰难的探索

建成广义相对论后,爱因斯坦依然没有满足,致力

于寻求一种能将引力场与电磁场,将相对论与量子论统

一起来的统一场论的,这耗费了他后半生的精力,始终

没有完成。

?我们的时代因科学认识以及这些思想在技术

上的应用所获得的出色成就而与过不同。谁会不为此感

到高兴呢?但我们不要忘记,仅有知识和技术不可能使

人类过上一种快乐而有尊严的生活。人类绝对有理由将

高道德标准和价值观念的倡导者,放在客观真理的发现

者之上。?

?我本来也应该成为一名工程师。

但一想到发明的才能被用到使日常生活更

加方便些的事物上,而且所有这些只是为了赚钱,我就更觉得难以忍受。?

引自爱因斯坦写给他的朋友海因里希〃灿格的一封信

?雄心壮志或者仅仅是一种责任感无法产生真正有价值的东西;真正有价值的东西只来自于对人类和客观事物的热爱。?

---引自爱因斯坦教导一个小孩子的信

?当我的头脑里没有什么特别的问题可想时,我就喜欢重新证明那些我早已知道的数学和物理学定理。这本身并无目的,而只是想沉浸于愉快的思考之中……?

----引自爱因斯坦1918年写给他的朋友海因里希〃灿格的一封信

?在自然中我观察到的是极其奇妙的构,而对此我们只了解得相当不完整,那必然会使一个思想者充满了谦卑感。?

----引自爱因斯坦1944至1945年的一封信

?绝不要把你们的研究当成一种义务,而应把它看作一种难得的机遇,这种机遇能让你们逐渐认识到在追求个人快乐的精神领域中释放出的美的影响力,对你们日后工作所属的社团带来的裨益。?

-----爱因斯坦给美国普林斯顿大学学生们的一则忠告

?像我这种类型的人存在的本质,在于他思考些什么和如何进行思考,而不是他做些什么或遭受到什么。?

三、趣闻轶事

1.惊奇

阿尔伯特到了四五岁,还不大会说话。父母亲心里着急:“难道小阿尔伯特是低能儿,是傻子?不,不可能。他那双棕色的大眼睛多么明亮。他那可爱的小脑袋这样一歪,一个人躲在角落里玩,有多少聪明的怪主意呢!可是他的小嘴为什么不说话呢?”他们请来了医生。孩子当然没有病。不善于说话,不喜欢说话,那不是病。

可是有一天,阿尔伯特似乎真的有些不正常了,父亲拿来一个小罗盘给他玩。孩子的小手捧着罗盘,只见中间那根针在轻轻地抖动,指着北边。他把盘子转过去,那根针不听他的话,照样指着北边。他把罗盘捧在胸前,扭转身子,再猛扭过去,可是那根针又回来了,还是指着北边。不管他怎样转,那根细细的红色磁针一直指着北边。阿尔伯特惊讶了,他张大眼睛,盯着玻璃下面那根红色的小针。“是什么东西使它总是指向北边呢?这根针四周什么也没有,是什么力量推着它指向北边的呢?”他想问父亲,可是话到了嘴边,说不出来。他被这神奇的现象惊得目瞪口呆。

小小的罗盘,里面那根按照一定规律行动的磁针,唤起了这位未来的科学家的好奇心——探索事物原委的好奇心。这种神怪的好奇心,正是萌生科学的幼苗。

2.上帝与自然

篇二:爱因斯坦简介

爱因斯坦简介

阿尔伯特〃爱因斯坦(Albert.Einstein)(1879-1955),美籍德国犹太人。1921年诺贝尔物理学奖获得者。他创立了代表现代科学的相对论,并为核能开发奠定了理论基础,在现代科学技术和它的深刻影响及广泛应用方面开创了现代科学新纪元,被公认为自伽利略、牛顿以来最伟大的科学家、思想家。

爱因斯坦热爱科学,也热爱人类。他没有因为埋头于科学研究而把自己置于社会之外,一直关心着人类的文明和进步,并为之顽强、勇敢地战斗。他说过:“人只有献身于社会,才能找出那实际上是短暂而又有风险的生命的意义”,他自己正是这样去做的。

1879年3月14日出生在德国西南的乌耳姆城,父母都是犹太人。

1880年后随全家迁居慕尼黑。

爱因斯坦小时候并不活泼,三岁多还不会讲话,父母很担心他是哑巴,曾带他去给医生检查。还好小爱因斯坦不是哑巴,可是直到九岁时讲话还不很通畅,所讲的每一句话都必须经过吃力但认真地思考。

四、五岁时,爱因斯坦有一次卧病在床,父亲送给他一个罗盘。当他发现指南针总是指着固定的方向时,感到非常惊奇,觉得一定有什么东西深深地隐藏在这现象后面。他一

连几天很高兴的玩这罗盘,还纠缠着父亲和雅各布叔叔问了一连串问题。尽管他连“磁”这个词都说不好,但他却顽固地想要知道指南针为什么能指南

爱因斯坦在念小学和中学时,功课属平常。由于他举止缓慢,不爱同人交往,老师和同学都不喜欢他。教他希腊文和拉丁文的老师对他更是厌恶,曾经公开骂他:“爱因斯坦,你长大后肯定不会成器。”

1895年春天,爱因斯坦16岁时,离开德国。

爱因斯坦的叔叔雅各布在电器工厂里专门负责技术方面的事务,爱因斯坦的父亲则负责商业的往来。雅各布是一个工程师,自己就非常喜爱数学,当小爱因斯坦来找他问问题时,他总是用很浅显通俗的语言把数学知识介绍给他。在叔父的影响下,爱因斯坦较早的受到了科学和哲学的启蒙 1902年2月21日,爱因斯坦取得了瑞士国籍,并迁居伯尔尼,等待专利局的招聘。

1903年,他与大学同学米列娃.玛丽克结婚。

1900~1904年,爱因斯坦每年都写出一篇论文,发表于德国《物理学杂志》。

1905年,爱因斯坦在科学史上创造了一个史无前例奇迹。这一年他写了六篇论文,在三月到九月这半年中,利用在专利局每天八小时工作以外的业余时间,在三个领域做出了四个有划时代意义的贡献,他发表了关于光量子说、分子

大小测定法、布朗运动理论和狭义相对论这四篇重要论文。 1907年提出了等效原理

1911年,他分析了刚性转动圆盘,意识到引力场中欧氏几何并不严格有效。同时还发现洛伦茨变化不是普适的,等效原理只对无限小区域有效……。

1912年,爱因斯坦回到苏黎世母校工作。

1913年发表了重要论文《广义相对论纲要和引力理论》,提出了引力的度规场理论。

1914年4月,爱因斯坦接受德国科学界的邀请,迁居到柏林,8月即爆发了第一次世界大战。

1914年9月,爱因斯坦参与发起反战团体“新祖国同盟” 1914年10月,爱因斯坦拒绝德国的科学界和文化界在军国主义分子的操纵和煽动下,发表了所谓“文明世界的宣言”,却毅然在反战的《告欧洲人书》上签上自己的名字。这一举动震惊了全世界。

1915年到1917年的3年中,是爱因斯坦科学成就的第二个高峰

1917年,列宁领导的苏联社会主义革命胜利后,爱因斯坦热情地支持这个伟大的革命,赞扬这是一次对全世界将有决定性意义的、伟大的社会实验。

二十年代到三十年代初期,爱因斯坦基本上是一个绝对的和平主义者,反对任何暴力和战争。

1925年以后,爱因斯坦全力以赴去探索统一场论。 1928年以后转入纯数学的探索

1925年~1955年这30年中,除了关于量子力学的完备性问题、引力波以及广义相对论的运动问题以外,爱因斯坦几乎把他全部的科学创造精力都用于统一场论的探索。 1937年,在两个助手合作下,他从广义相对论的引力场方程推导出运动方程,进一步揭示了空间——时间、物质、运动之间的统一性,这是广义相对论的重大发展,也是爱因斯坦在科学创造活动中所取得的最后一个重大成果。

1955年,爱因斯坦与罗素联名发表了反对核战争和呼吁世界和平的《罗素—爱因斯坦宣言》。

1955年4月18日,人类历史上最伟大的科学家,阿尔伯特.爱因斯坦因主动脉瘤破裂逝世于美国普林斯顿

篇三:爱因斯坦简介

要求:图片尽可能的清楚、好看(大小与桌面高清壁纸近似),最好是竖版;文字内容包括:中文名、英文名、生

卒年、个人简介(成就及有代表性的学说介绍)、名言警句(3句及以上)

? 找到后的资料不用做成以下成品,只需将每个人的图片、文字资料放在一个文件夹里即可

成品展示:(如下)

探索真理比占有真理更为可贵。 科学是永无止境的,它是一个永恒之谜。

不要努力成为一个成功者,要努力成为 一个有价值的人。 ——爱因斯坦

爱因斯坦

Albert Einstein

1879——1955 阿尔伯特·爱因斯坦,20世纪犹太裔理论物理学家,创立了相对论(现代物理学的两大支柱之一)。他的质能方程E = mc2著称于世,并因为对理论物理的贡献,特别是发现了光电效应,而获得1921年诺贝尔物理学奖,推动了量子力学的发展。被誉为是“现代物理学之父”及二十世纪世界最重要科学家之一。他卓越的科学成就和原创

性使得“爱因斯坦”一词成为“天才”的同义词。

篇四:科学家简介

科学技术是人类智慧的结晶,也是人类认识世界、改造世界的有力武器。科学技术的发展史,也是一部人类社会的文明史:从猿人的餐风露宿,到现代人的星际旅行;从古代的烽火传讯,到现在的互联网络;从远古的钻木取火,到今天新型能源的充分利用。人类所取得的每一点进步,无不得益于对未知世界的探索,无不得益于对科学技术的掌握。然而,科学的探索过程就像一幅长长的画卷,而每一个阶段又是一个精彩的画面。科学的研究,不仅需要科学家拥有一颗热爱科研之心,更是需要他们对科研的执著。开拓未来需要这样的精神,我们要继承和发扬前人的精神结晶。科学家是伟大的,因为他们有探索科学的过程,在探索过程中他们没有畏惧困难,为了自己的理想,为了科学事业,不为权威,献身科学,敢于创新,真理至上,而不惜一切,勇往直前。他们就像一艘宇宙飞船驶入新领域,去发现真理的光芒。牛顿,达尔文,爱因斯坦,钱学森,邓稼先等一代代国内外启示当今人们对未来的新领域的探索能够不畏困难,坚持科研,创造成果,造福人类。

钱学森,(1911-2009)浙江省杭州人。世界著名科学家,空气动力学家,中国航天事业的奠基人,中国科学院和中国工程院院士,中国两弹一星功勋奖章获得者之一。2007年被评为感动中国年度人物。他是航空领域的世界级权威、空气动力学学科的第三代挚旗人,是工程控制论的创始人。被誉为“中国航天之父”、“中国导弹之父”、“火箭之王”、“中国自动化控制之父”。

邓稼先(1924—1986),安徽省怀宁县人,中国杰出的科学家、中国“两弹”元勋,是我国核武器理论研究工作的奠基者之一;从原子弹、氢弹原理的突破和试验成功及其武器化,到新的核武器的重大原理突破和研制试验,均做出了重大贡献;作为主要参加者,其成果曾获国家自然科学奖一等奖和国家科技进步奖特等奖;邓稼先被被称为“中国原子弹之父”。

杨振宁,安徽合肥人,现安徽省合肥市肥西县,清华大学高等研究院教授,香港中文大学博文讲座教授。1949年,与恩利克·费米合作,提出基本粒子第一个复合模型。1956年与李政道合作,提出“弱相互作用中宇称不守恒理论”,共同获得1957年诺贝尔物理学奖。

艾萨克·牛顿(1643—1727)英国著名的物理学家、数学家和天文学家。他被誉为百科全书式的“全才”,在自然科学领域中最杰出的贡献是创立了经典力学体系,发现牛顿运动定律和万有引力定律。在数学领域,他创立了二项式定理,并创立了微积分理论。在天文学方面,他发明了反射望远镜,并考察了行星运动规律,解释了潮汐现象。他的著作《自然哲学的数学原理》是科学史上的巨著,提出了作为经典力学基础的三个运动定律,实现了人类对自然认识的巨大飞跃,为世界科学做出了卓越贡献。

阿尔伯特·爱因斯坦(1879-1955),20世纪最伟大科学家,犹太裔理论物理学家。他创立了相对论,是现代物理学的两大支柱之一。爱因斯坦的质能方程最著称于世,因为“对理论物理的贡献,特别是发现了光电效应”而获得1921年诺贝尔物理学奖。爱因斯坦被誉为是“现代物理学之父”及二十世纪世界最重要科学家之一。他卓越的科学成就和原创性使得“爱因斯坦”一词成为“天才”的同义词。

篇五:爱因斯坦相对论简介

爱因斯坦相对论简介

狭 义 相 对 论

1、爱因斯坦第一假设

全部狭义相对论主要基于爱因斯坦对宇宙本性的两个假设。

第一个可以这样陈述:

所有惯性参照系中的物理规律是相同的

此处唯一稍有些难懂的地方是所谓的"惯性参照系"。举几个例子就可以解释清楚:

假设你正在一架飞机上,飞机水平地以每小时几百英里的恒定速度飞行,没有任何颠簸。一个人从机舱那边走过来,说:"把你的那袋花生扔过来好吗?"你抓起花生袋,但突然停了下来,想道:"我正坐在一架以每小时几百英里速度飞行的飞机上,我该用多大的劲扔这袋花生,才能使它到达那个人手上呢?" 不,你根本不用考虑这个问题,你只需要用与你在机场时相同的动作(和力气)投掷就行。花生的运动同飞机停在地面时一样。

你看,如果飞机以恒定的速度沿直线飞行,控制物体运动的自然法则与飞机静止时是一样的。我们称飞机内部为一个惯性参照系。("惯性"一词原指牛顿第一运动定律。惯性是每个物体所固有的当没有外力作用时保持静止或匀速直线运动的属性。惯性参照系是一系列此规律成立的参照系。

另一个例子。让我们考查大地本身。地球的周长约40,000公里。由于地球每24小时自转一周,地球赤道上的一点实际上正以每小时1600公里的速度向东移动。然而我敢打赌说Steve Young在向Jerry Rice(二人都是橄榄球运动员。译者注)触地传球的时候,从未对此担心过。这是因为大地在作近似的匀速直线运动,地球表面几乎就是一个惯性参照系。因此它的运动对其他物体的影响很小,所有物体的运动都表现得如同地球处于静止状态一样。

实际上,除非我们意识到地球在转,否则有些现象会是十分费解的。(即,地球不是在沿直线运动,而是绕地轴作一个大的圆周运动)

例如:天气(变化)的许多方面都显得完全违反物理规律,除非我们对此(地球在转)加以考虑。另一个例子。远程炮弹并非象他们在惯性系中那样沿直线运动,而是略向右(在北半球)或向左(在南半球)偏。(室外运动的高尔夫球手们,这可不能用于解释你们的擦边球)对于大多数研究目的而言,我们可以将地球视为惯性参照系。但偶尔,它的非惯性表征将非常严重(我想把话说得严密一些)。

这里有一个最低限度:惯性系是一个静止或作匀速直线运动的系。爱因斯坦的第一假设使此类系中所有的物理规律都保持不变。运动的飞机和地球表面的例子只是用以向你解释这是一个平日里人们想都不用想就能作出的合理假设。谁说爱因斯坦是天才?

2、爱因斯坦第二假设

19世纪中页人们对电和磁的理解有了一个革命性的飞跃,其中以詹姆斯.麦克斯韦(James Maxwell)的成就为代表。电和磁两种现象曾被认为毫不相关,直到奥斯特(Oersted)和安培(Ampere)证明电能产生磁;法拉弟(Faraday)和亨利(Henry)证明磁能产生电。现在我们知道电和磁的关系是如此紧密,以致于当物理学家对自然力进行列表时,常常将电和磁视为一件事。

麦克斯韦的成就在于将当时所有已知的电磁知识集中于四个方程中:

(如果你没有上过理解这些方程所必需的三到四个学期的微积分课程,那么就坐下来看它们几分钟,欣赏一下其中的美吧)

麦克斯韦方程对于我们的重要意义在于,它除了将所有人们已知的电磁知识加以描述以外,还揭示了一些人们不知道的事情。例如:构成这些方程的电磁场可以以振动波的形式在空间传播。当麦克斯韦计算了这些波的速度后,他发现它们都等于光速。这并非巧合,麦克斯韦(方程)揭示出光是一种电磁波。 我们应记住的一个重要的事情是:光速直接从描述所有电磁场的麦克斯韦方程推导而来。 现在我们回到爱因斯坦。

爱因斯坦的第一个假设是所有惯性参照系中的物理规律相同。他的第二假设是简单地将此原则推广到电和磁的规律中。这就是,如果麦克斯韦假设是自然界的一种规律,那么它(和它的推论)都必须在所有惯性系中成立。这些推论中的一个就是爱因斯坦的第二假设:

光在所有惯性系中速度相同

爱因斯坦的第一假设看上去非常合理,他的第二假设延续了第一假设的合理性。但为什么它看上去并不合理呢?

火车上的试验

为了说明爱因斯坦第二假的合理性,让我们来看一下下面这副火车上的图画。

火车以每秒100,000,000米/秒的速度运行,Dave站在车上,Nolan站在铁路旁的地面上。Dave用手中的电筒"发射"光子。

光子相对于Dave以每秒300,000,000米/秒的速度运行,Dave以100,000,000米/秒的速度相对于Nolan运动。因此我们得出光子相对于Nolan的速度为400,000,000米/秒。

问题出现了:这与爱因斯坦的第二假设不符!爱因斯坦说光相对于Nolan参照系的速度必需和Dave参照系中的光速完全相同,即300,000,000米/秒。那么我们的“常识感觉”和爱因斯坦的假设那一个错了呢?

好,许多科学家的试验(结果)支持了爱因斯坦的假设,因此我们也假定爱因斯坦是对的,并帮大家找出常识相对论的错误之处。

记得吗?将速度相加的决定来得十分简单。一秒钟后,光子已移动到Dave前300,000,000米处,而Dave已经移动到Nolan前100,000,000米处。其间的距离不是400,000,000米只有两种可能:

1、 相对于Dave的300,000,000米距离对于Nolan来说并非也是300,000,000米

2、 对Dave而言的一秒钟和对Nolan而言的一秒钟不同

尽管听起来很奇怪,但两者实际上都是正确的。

3、爱因斯坦第二假设--时间和空间

我们得出一个自相矛盾的结论。我们用来将速度从一个参照系转换到另一个参照系的“常识相对论”和爱因斯坦的“光在所有惯性系中速度相同”的假设相抵触。只有在两种情况下爱因斯坦的假设才是正确的:要么距离相对于两个惯性系不同,要么时间相对于两个惯性系不同。

实际上,两者都对。第一种效果被称作“长度收缩”,第二种效果被称作“时间膨胀”。 长度收缩:

长度收缩有时被称作洛伦茨(Lorentz)或洛伦茨-弗里茨格拉德(FritzGerald)收缩。在爱因斯坦之前,洛伦茨和弗里茨格拉德就求出了用来描述(长度)收缩的数学公式。但爱因斯坦意识到了它的重大意义并将其植入完整的相对论中。这个原理是:

参照系中运动物体的长度比其静止时的长度要短

下面用图形说明以便于理解:

上部图形是尺子在参照系中处于静止状态。一个静止物体在其参照系中的长度被称作他的“正确长度”。一个码尺的正确长度是一码。下部图中尺子在运动。用更长、更准确的话来讲:我们相对于某参照系,发现它(尺子)在运动。长度收缩原理指出在此参照系中运动的尺子要短一些。

这种收缩并非幻觉。当尺子从我们身边经过时,任何精确的试验都表明其长度比静止时要短。尺子并非看上去短了,它的确短了!然而,它只在其运动方向上收缩。下部图中尺子是水平运动的,因此它的水平方向变短。你可能已经注意到,两图中垂直方向的长度是一样的。

时间膨胀:

所谓的时间膨胀效应与长度收缩很相似,它是这样进行的:

某一参照系中的两个事件,它们发生在不同地点时的时间间隔

总比同样两个事件发生在相同地点的时间间隔长。

这更加难懂,我们仍然用图例加以说明:

图中两个闹钟都可以用于测量第一个闹钟从A点运动到B点所花费的时间。然而两个闹钟给出的结果并不相同。我们可以这样思考:我们所提到的两个事件分别是“闹钟离开A点”和“闹钟到达B点”。在我们的参照系中,这两个事件在不同的地点发生(A和B)。然而,让我们以上半图中闹钟自身的参照系观察这件事情。从这个角度看,上半图中的闹钟是静止的(所有的物体相对于其自身都是静止的),而刻有A和B点的线条从右向左移动。因此“离开A点”和“到达B点”着两件事情都发生在同一地点!(上半图中闹钟所测量的时间称为“正确时间”)按照前面提到的观点,下半图中闹钟所记录的时间将比上半图中闹钟从A到B所记录的时间更长。

此原理的一个较为简单但不太精确的陈述是:运动的钟比静止的钟走得更慢。最著名的关于时间膨胀的假说通常被成为双生子佯谬。假设有一对双胞胎哈瑞和玛丽,玛丽登上一艘快速飞离地球的飞船(为了使效果明显,飞船必须以接近光速运动),并且很快就返回来。我们可以将两个人的身体视为一架用年龄计算时间流逝的钟。因为玛丽运动得很快,因此她的“钟”比哈瑞的“钟”走得慢。结果是,当玛丽返回地球的时候,她将比哈瑞更年轻。年轻多少要看她以多快的速度走了多远。

时间膨胀并非是个疯狂的想法,它已经为实验所证实。最好的例子涉及到一种称 为"介子"的亚原子粒子。一个介子衰变需要多少时间已经被非常精确地测量过。无论怎样,已经观测到一个以接近光速运动的介子比一个静止或缓慢运动的介子的寿命要长。这就是相对论效应。从运动的介子自身来看,它并没有存在更长的时间。这是因为从它自身的角度看它是静止的;只有从相对于实验室的角度看该介子,我们才会发现其寿命被“延长”或“缩短”了。?

应该加上一句:已经有很多很多的实验证实了相对论的这个推论。(相对论的)其他推论我们以后才能加以证实。我的观点是,尽管我们把相对论称作一种“理论”,但不要误认为相对论有待于证实,它(实际上)是非常完备的。

4、伽玛参数(γ)

现在你可能会奇怪:为什么你在日常生活中从未注意到过长度收缩和时间膨胀效应?例如根据刚才我所说的,如果你驱车从俄荷马城到勘萨斯城再返回,那么当你到家的时候,你应该重新对表。因为当你驾车的时候,你的表应该比在你家里处于静止状态的表走得慢。如果到家的时候你的表现时是3点正,那么你家里的表都应该显示一个晚一点的时间。为什么你从未发现过这种情况呢?

(来自:WWw.SmhaiDa.com 海达范文网:科学家爱因斯坦简介)

答案是:这种效应显著与否依赖于你运动速度的快慢。而你运动得非常慢(你可能认为你的车开得很快,但这对于相对论来说,是极慢的)。长度收缩和时间膨胀的效果只有当你以接近光速运动的时候才能注意到。而光速约合186,300英里/秒(或3亿米/秒)。在数学上,相对论效应通常用一个系数加以描述,物理学家通常用希腊字母γ加以表示。这个系数依赖于物体运动的速度。例如,如果一根米尺(正确长度为1米)快速地从我们面前飞过,则它相对于我们的参照系的长度是1/γ米。如果一个钟从A点运动到B点要3秒钟,那么相对于我们的参照系,这个过程持续3/γ秒。

为了理解现实中为什么我们没有注意到相对论效应,让我们看一下(关于)γ的公式:

这里的关键是分母中的v/c。v是我们所讨论的物体的运动速度,c是光速。因为任何正

常尺寸物体的速度远小于光速,所以v/c非常小;当我们将其平方后(所得的结果)就更小了。因此对于所有实际生活中通常尺寸的物体而言,γ的值就是1。所以对于普通的速度,我们通过乘除运算后得到的长度和时间没有变化。为了说明此事,下面有一个对应于不同速度的γ值表。(其中)最后一列是米尺在此速度运动时的长度(即1/γ米)。

22 第一列中c仍旧表示光速。.9c等于光速的十分之九。为了便于参照举个例子:“土星五号”火箭的飞行速度大约是25,000英里/小时。你看,对于任何合理的速度,γ几乎就是1。因此长度和时间几乎没有变化。在生活中,相对论效应只是发生在科幻小说(其中的飞船远比“土星五号”快得多)和微观物理学中(电子和质子常被加速到非常接近光速的速度)。在从芝加哥飞往丹佛的路上,这种效应是不会显现出来的。

5、宇宙执法者的历险

宇宙执法者AD在A行星上被邪恶的EN博士所擒。EN博士给AD喝了一杯13小时后发作的毒酒,并告诉AD解药在距此40,000,000,000公里远的B行星上。AD得知此情况后立即乘上其0.95倍光速的星际飞船飞往B星,那么:

AD能即使到达B星并取得解药吗?

我们做如下的计算:

A、B两行星之间的距离为40,000,000,000公里。飞船的速度是1,025,000,000公里/小时。把这两个数相除,我们得到从A行星到B行星需要39小时。

那么AD必死无疑。

等一下!这只对于站在A行星上的人而言。由于毒药在AD的体内是要经过新陈代谢(才能发作)的,我们必须从AD的参照系出发研究这一问题。我们可以用两种方法做这件事情,它们将得到相同的结论。

1. 设想一个大尺子从A行星一致延伸到B行星。这个尺子有40,000,000,000公里长。然而,从AD的角度而言,这个尺子以接近光速飞过他身边。我们已经知道这样的物体会发生长度收缩现象。在AD的参照系中,从A行星到B行星的距离以参数γ在收缩。在95%的光速下,γ的值大约等于3.2。因此AD认为这段路程只有12,500,000,000公里远(400亿除以3.2)。我们用此距离除以AD的速度,得到12.2小时,AD将提前将近1小时到达B行星!

2. A行星上的观察者会发现AD到达B需要花费大约39小时时间。然而,这是一个膨胀后的时间。我们知道AD的“钟”以参数γ(3.2)变慢。为了计算AD参照系中的时间,我们再用39小时除以3.2,得到12.2小时。(也)给AD剩下了大约1小时(这很好,因为这给了AD20分钟时间离开飞船,另外20分钟去寻找解药)。

AD将生还并继续与邪恶战斗。

如果对上文中我的描述加以仔细研究,你会发现许多似是而非,非常微妙的东西。当你深入地思考

它的时候,一般你最终将提出这样一个问题:“等一下,在AD的参照系中,EN的钟表走得更慢了,因此在AD的参照系中,宇宙旅行应花费更长的时间,而不是更短...

如果你对这个问题感兴趣或者觉得困惑,你可能应该看一下后文《宇宙执法者的历险——微妙的时间》。或者你可以相信我所说的话“如果你把所有的因果都弄清楚,那么所有(这些)都是正确的”并跳到《质量和能量》一章。

宇宙执法者的历险——微妙的时间

好,这就是我们刚刚看到的。我们已经发现在AD相对于EN参照系旅行中的时间膨胀。在EN参照系中,AD是运动的,因此AD的钟走得慢。结果是在此次飞行中EN的钟走了39小时,而AD的钟走了12小时。这常常使人们产生这样的问题:

相对于AD的系,EN是运动的,因此EN的钟应该走得慢。因此当AD到达B行星的时候,他的钟走的时间比EN的长。谁对?长还是短?

好问题。当你问这个问题的时候,我知道你已经开始进入情况了。在开始解释之前,我必须声明在前文所叙述的事情都是对的。在我所描述的情况下,AD可以及时拿到解药。现在让我们来解释这个徉谬。这与我尚未提及的“同时性”有关。相对论的一个推论是:同一参照系中的两个同时(但不同地点)发生的事件相对于另一个参照系不同时发生。

让我们来研究一些同时发生的事件。

首先,让我们假设EN和AD在AD离开A行星时同时按下秒表。按照EN的表,这趟B行星之旅将花费39小时。换言之,EN的表在AD到达B行星时读数为39小时。因为时间膨胀,AD的表与此同时读数为12.2小时。即,以下三件事情是同时发生的:

1、 EN的表读数为39

2、 AD到达B行星

3、 AD的表读数为12.2

这些事件在EN的参照系中是同时发生的。

现在在AD的参照系中,上述三个事件不可能同时发生。更进一步,因为我们知道EN的表一定以参数γ减慢(此处γ大约为3.2),我们可以计算出当AD的表读数为12.2小时的时候,EN的表的读数为12.2/3.2=3.8小时。因此在AD的系中,这些事情是同时发生的:

1、 AD到达B行星

2、 AD的钟的读数为1.2

3、 EN的钟的读数为3.2

前两项在两个系中都是相同的,因为它们在同一地点——B行星发生。两个同一地点发生的事件要么同时发生,要么不同时发生,在这里,参照系不起作用。

从另一个角度看待此问题可能会对你有所帮助。你所感兴趣的事件是从AD离开A行星到AD到达B行星。一个重要的提示:AD在两个事件中都存在。也就是说,在AD的参照系中,这两个事件在同一地点发生。由此,AD参照系的事件被称作“正确时间”,所有其他系中的时间都将比此系中的更长(参见时间膨胀原理)。不管怎样,如果你对AD历险中的时间膨胀感到迷惑,希望这可以使之澄清一些。如果你原本不糊涂,那么希望你现在也不。

质量和能量

除了长度收缩和时间膨胀以外,相对论还有许多推论。其中最著名、最重要的是关于能量的。 能量有许多状态。任何运动的物体都因其自身的运动而具有物理学家所谓的“动能”。动能的大小和物体的运动速度及质量有关。(“质量”非常类似于“重量”,但并不完全相同)放在架子上的物体具有“引力势能”。因为如果架子被移掉,它就(由于引力)具有获得动能的可能。

热也是一种形式的能,其最终可以归结于组成物质的原子和分子的动能,此外还有许多其他形式的能。 把上述现象都和能量联系起来的原因,即它们之间的联系,是能量守恒定律。这个定律是说,如果我们把宇宙中全部的能量都加起来(我们可以用象焦耳或千瓦时这样的单位定量地描述能量),其总量永不改变。此即,能量从不会产生或消灭,尽管它们可以从一种形态转化为另一种形态。例如,汽车是一种可以将(在引擎的汽缸中的)热能转化为(汽车运动的)动能的设备;灯泡(可以)将电能转化为光能(这又是两种能的形式)。

高中作文