求解分式方程.(6x+12)/(x^2+4x+4)-(x^2-4)/(x^2-4x+4)+x^2/(x^2-4)=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 13:27:12

求解分式方程.(6x+12)/(x^2+4x+4)-(x^2-4)/(x^2-4x+4)+x^2/(x^2-4)=0
求解分式方程.(6x+12)/(x^2+4x+4)-(x^2-4)/(x^2-4x+4)+x^2/(x^2-4)=0

求解分式方程.(6x+12)/(x^2+4x+4)-(x^2-4)/(x^2-4x+4)+x^2/(x^2-4)=0
方程化为:6/(x+2)-(x+2)/(x-2)+x^2/(x+2)(x-2)=0
两边同时乘以(x-2)(x+2)
6(x-2)-(x+2)^2+x^2=0
6x-12-4x-4=0
2x=16
x=8
经检验为原方程的根.