x(1+y^2)+y(1+x^2)dy/dx=0 尤其是积分的步骤请详细讲解
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 15:49:10
x(1+y^2)+y(1+x^2)dy/dx=0 尤其是积分的步骤请详细讲解
x(1+y^2)+y(1+x^2)dy/dx=0 尤其是积分的步骤请详细讲解
x(1+y^2)+y(1+x^2)dy/dx=0 尤其是积分的步骤请详细讲解
x(1+y^2)+y(1+x^2)dy/dx=0
x(1+y^2)=-y(1+x^2)dy/dx
y/(1+y²)dy=-x/(1+x²)dx
2y/(1+y²)dy=-2x/(1+x²)dx
1/(1+y²)dy²=-1/(1+x²)dx²
两边同时积分,得
ln(1+y²)=-ln(1+x²)+lnc
所以
1+y²=-c(1+x²)
dy/dx,y=(1+x+x^2)e^x
dy/dx=x(1+y^2)/y通解
y=f[(x-1)/(x+1)],f'(x)=arctanx^2,求dy/dx,dy
dy/dx=(e^x+x)(1+y^2)通解
y=x^2+3x+1 求dy
Y=x√(1-x^2 )+arcsinx,dy=?
y=sin^2 {x/(x+1)} 求dy
y=2^x-cosx/1-x 求dy
x(1+x^2)dy=(y+x^2y-x^2)dx通解
求方程 dy/dx+x(y-x) +x^3(y-x)^2=1的通解~
[y+(x^2)y]dy=[x(y^2)-x]dx ,dy=x(e^x)(1+y^2)dx 这两题的通解
dx/dy=x/y+[cos(x/y)]∧2,y(0)=1
y(x + y + 1) dx + (x + 2y) dy = 0:运用正合方程式求解
解微分方程x^ydx=(1-y^2+x^2-x^2y^2)dy,
y=e^2x+x^2-yarcsin(1/x),求y′及dy
y=x^2x,求dy
求解微分方程dy/dx+x/2y=1/2
dy/dx=1+x+y^2+xy^2