帮看看这个不定积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 09:04:57
帮看看这个不定积分
帮看看这个不定积分
帮看看这个不定积分
设u=lnx,dv=dx/[(1+x²)^(3/2)]
则du=dx/x,v=∫dx/[(1+x²)^(3/2)]
∵v=∫dx/[(1+x²)^(3/2)]
=∫costdt (设x=tant)
=sint
=x/√(1+x²)
∴由分部积分法得:
∫lnxdx/[(1+x²)^(3/2)]
=xlnx/√(1+x²)-∫dx/√(1+x²)
=xlnx/√(1+x²)-arctanx+C (C是积分常数)