数学函数难题抛物线y=ax^2+bx+c,交x轴与点A、B,叫y轴与点D,以AB为直径的半圆M交y轴于点C.已知圆心M的坐标为(1,0)1)求抛物线的表达式(用含a的式子表示)2)设点C关于抛物线对称轴的对称点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 12:11:59
数学函数难题抛物线y=ax^2+bx+c,交x轴与点A、B,叫y轴与点D,以AB为直径的半圆M交y轴于点C.已知圆心M的坐标为(1,0)1)求抛物线的表达式(用含a的式子表示)2)设点C关于抛物线对称轴的对称点
数学函数难题
抛物线y=ax^2+bx+c,交x轴与点A、B,叫y轴与点D,以AB为直径的半圆M交y轴于点C.已知圆心M的坐标为(1,0)
1)求抛物线的表达式(用含a的式子表示)
2)设点C关于抛物线对称轴的对称点为P.问:当a为何值是,点D在PM直线上?说明理由
3)问:是否存在以B、C、D为丁点的三角形是等腰三角形的情形?若存在,请求出此时a的值,请说明理由.
数学函数难题抛物线y=ax^2+bx+c,交x轴与点A、B,叫y轴与点D,以AB为直径的半圆M交y轴于点C.已知圆心M的坐标为(1,0)1)求抛物线的表达式(用含a的式子表示)2)设点C关于抛物线对称轴的对称点
(1)抛物线对称轴x=-b/(2a)=1,b=-2a;
所以抛物线方程可表示为 ax^2-2ax+c;
(2)y=a(x-1)^2+c-a; 令y=0,得xA=1-{(a-c)/a}^0.5,xB=1+{(a-c)/a}^0.5.
所以半圆直径D=xB-xA=2*{(a-c)/a}^0.5
则圆方程为(x-1)^2+y^2=r^2
=(a-c)/a;
设c点坐标为(0,k),则p点坐标为(2,k),
带到上面圆方程得1+k^2=(a-c)/a.(1)
所以k=(-c/a)^0.5;
而D点的坐标为(0,c);
则PM的斜率为K=(k-0)/(2-1)=k;
所以PM的方程为y=k(x-1);
把D点坐标(0,c)带到直线PM的方程得c=-k,(2)
联立方程(1)、(2)得a=-1/c;
(3)CD=k-c==(-c/a)^0.5-c;
CB=(k^2+xB^2)^0.5;
DB=(c^2+xB^2)^0.5;
下面分别讨论,太杂了