已知abc为整数且ab/(a+b)=1/3,bc/(b+c)=1/4,ca/(c+a)=1/5,求abc/(ab+bc+ca)的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 15:11:51

已知abc为整数且ab/(a+b)=1/3,bc/(b+c)=1/4,ca/(c+a)=1/5,求abc/(ab+bc+ca)的值
已知abc为整数且ab/(a+b)=1/3,bc/(b+c)=1/4,ca/(c+a)=1/5,求abc/(ab+bc+ca)的值

已知abc为整数且ab/(a+b)=1/3,bc/(b+c)=1/4,ca/(c+a)=1/5,求abc/(ab+bc+ca)的值
取倒数
1/a+1/b=3
1/b+1/c=4
1/c+1/a=5
所以1/a+1/b+1/c=6
所以abc/(ab+bc+ca)=1/6

∵ab/(a+b)=1/3,bc/(b+c)=1/4,ca/(c+a)=1/5
∴1/a+1/b=3 , 1/b+1/c=4,1/a+1/c=5
∴1/a+1/b+ 1/b+1/c+1/a+1/c=3+4+5=12
1/a+1/b+1/c=6
∴(ab+bc+ca)/abc=6
∴abc/(ab+bc+ca)=1/6

(a+b)/ab=3 ,1/a+1/b=3
(b+c)/bc=4 , 1/b+1/c=4
(c+a)/ca=5 , 1/c+1/a=5
(ab+bc+ca)/abc
=1/a+1/b+1/c
=(3+4+5)/2
=6
则 abc/(ab+bc+ca)=1/6

(b+c)/bc=4,(a+b)/ab=3,(a+c)/=5,
(ab+ac)/abc+(ac+bc)/abc+(ab+bc)/abc=12
(2ab+2ac+2bc)/abc=12
(ab+ac+bc)/=6
abc/(ab+bc+ac)=1/6

取倒数
1/a+1/b=3
1/b+1/c=4
1/c+1/a=5
所以1/a+1/b+1/c=6
abc/(ab+bc+ca)=1/6