在等边三角形ABC内有一P,PA=3,PB=4,PC=5,求三角形ABC的边长和面积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 14:51:24

在等边三角形ABC内有一P,PA=3,PB=4,PC=5,求三角形ABC的边长和面积
在等边三角形ABC内有一P,PA=3,PB=4,PC=5,求三角形ABC的边长和面积

在等边三角形ABC内有一P,PA=3,PB=4,PC=5,求三角形ABC的边长和面积
如果你是高中学生的话,可以这样做:
这是我以前给别人作的,题中的PA=5,PB=3,PC=4和你的条件有些不同,只需变过来即可)
设角PBC=Q,等边三角形边长为a
PA=5,PB=3,PC=4
根据题意,由余弦定理得:
cosQ=(BP^2+BC^2-PC^2)/2*BP*BC=(9+BC^2-16)/6BC=(BC^2-7)/6BC
即:cosQ=(a^2-7)/6a(1式)
角ABP=60-角PBC=60-Q
cos(60-Q)=(BP^2+AB^2-AP^2)/2*AB*BP=(9+AB^2-25)/6AB=(AB^2-16)/6AB
即:cos(60-Q)=(a^2-16)/6a(2式)

cos(60-Q)=cos60cosQ-sin60sinQ=cosQ/2-根号3*sinQ/2=(a^2-16)/6a (3式)
将(1式)代入(3式)得:
cosQ/2-根号3*sinQ/2=(a^2-16)/6a
1/2*(a^2-7)/6a-根号3*sinQ/2=(a^2-16)/6a
-根号3*sinQ/2=(a^2-16)/6a -1/2*(a^2-7)/6a (等式两边同时乘以2)得:
-根号3*sinQ=2*(a^2-16)/6a-(a^2-7)/6a
-根号3*sinQ=(2a^2-32-a^2+7)/6a
-根号3*sinQ=(a^2-25)/6a
根号3*sinQ=(25-a^2)/6a
sinQ=(25-a^2)/6a根号3
而(sinQ)^2+(cosQ)^2=1
所以:
[(25-a^2)/6a根号3]^2+[(a^2-7)/6a]^2=1
(25-a^2)^2/108a^2 +(a^2-7)^2/36a^2=1
令a^2=t
(25-t)^2/108t +(t-7)^2/36t=1
(625-50t+t^2)/108t +(t^2-14t+49)/36t-1=0
(625-50t+t^2)/108t+(3t^2-42t+147)/108t -108t/108t=0
(625-50t+t^2+3t^2-42t+147-108t)/108t=0
t不等于0
所以(625-50t+t^2+3t^2-42t+147-108t)=0
4t^2-200t+772=0
t^2-50t+193=0
根据求根公式得
t1=25+12根号3
t2=25-12根号3
由(1式)得
a>0
cosQ>0即:
(a^2-7)/6a>0
a^2>7
t2=25-12根号3<7(不合题意,舍去)
所以t=25+12根号3
即a^2=25+12根号3
a=根号(25+12根号3 )
面积是1/2*a^2*sin60

提示:3,4,5为直角三角形的三边长,可尝试作出辅助线利用直角三角形来解决问题

在等边三角形ABC内有一P,PA=3,PB=4,PC=5,求三角形ABC的边长和面积 已知,在等边三角形ABC内一点P,PB:PC:PA=1:2:根号3,求角APB的度数 点P为等边三角形ABC内一点 PA=3 PB=4 PC=5 求三角形ABC面积 P为等边三角形ABC内一点,PA=5,PB=4,PC=3,求三角形ABC的面积 已知三角形ABC为等边三角形,P为三角形ABC的外接圆上一点,当P在弧BC上时,求证:PA=PB+PC要有详细说明 在等边三角形ABC内有一点P,PA=10.PB=6.PC=8.求角BPC的度数 立体几何看题画图(不用解,画图就行)在三角形ABC边长为3a,P是平面ABC外一点,PA=PB=PC=2a,则P到平面ABC的距离为()因为三角形ABC为等边三角形,P到三边距离相等,所以P在面ABC上的投影P'必是等边 一道数学几何题,与勾股定理有关在等边三角形ABC中有一点P,满足PA=3,PB=4,PC=5,求∠APB的度数. 在等边三角形ABC内有一点p,已知:pA=5,PB=4,PC=3,求角BPC的度数. 已知等边三角形ABC外任意一点P,证明:PA P为等边三角形ABC外一点,求证:PA 已知三棱锥P-ABC的底面是边长为3的等边三角形,PA垂直于底面ABC,PA=2,求三棱锥外接球的表面积 一道证明四点共圆的题目 在等边三角形ABC外取一点P 若PA=PB+PC 求证 A B P C四点共圆 p是等边三角形abc内的任意一点,pa=3,pb=5.pc=4,求角APC 等边三角形ABC内有一点P,PA=2,PB=根号3,CP=1,求角BPC的度数? 已知等边三角形ABC内一点P,PA=5,PB=3,PC=4,求∠BPC的度数 等边三角形ABC,内有一点P,PA=5,PB=3,PC=4,求角BPC的大小. 如图,P是等边三角形ABC外接圆弧BC上一点,求证PA=PB+PC