求平面向量基本定理的证明如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,存在唯一一对有序实数(x 、y) ,使 a= xe1+ ye2只证明了唯一性,没有证明存在性啊?怎样证明
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:14:53
求平面向量基本定理的证明如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,存在唯一一对有序实数(x 、y) ,使 a= xe1+ ye2只证明了唯一性,没有证明存在性啊?怎样证明
求平面向量基本定理的证明
如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,存在唯一一对有序实数(x 、y) ,使 a= xe1+ ye2
只证明了唯一性,没有证明存在性啊?怎样证明存在这样的有序实数对?
求平面向量基本定理的证明如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,存在唯一一对有序实数(x 、y) ,使 a= xe1+ ye2只证明了唯一性,没有证明存在性啊?怎样证明
用反证法证明:
假设存在 另一对实数 m,n 满足 me1+ye2=a
又 xe1+ye2=a
me1+ye2=xe1+ye2
(m-x)e1=(y-n)e2
因为e1,e2不共线
所以 m-x=0,y-n=0 所以m=x,y=n
与假设矛盾
所以得证
楼主,题目的意思你再琢磨一下.
存在是前提,要证的是 唯一.
同时这个命题本来就是人为发现而定义出来的,是定义它存在的.
平面向量基本定理 的证明如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,存在唯一一对有序实数(x 、y) ,使 a= xe1+ ye2.这里{e1、e2}称为这一平面内所有向量的一组基底,
求平面向量基本定理的证明如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,存在唯一一对有序实数(x 、y) ,使 a= xe1+ ye2只证明了唯一性,没有证明存在性啊?怎样证明
平面向量基本定理中为什么是两个不共线的向量(e1和e2可以共线吗)
关于平面向量基本定理如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数λ、μ,使a= λ*e1+ μ*e2,(λ+μ=1).为什么λ+μ=1?
平面向量基底的问题平面向量基本定理到底是什么意思啊,向量的基底又是什么意思啊,和那个数乘有什么区别啊 ?如果e1、e2是平面内两个不共线的向量,那么对于平面内的任一向量a,有且只有
设向量e1 e2 是平面内一组基地,如果向量AB等于3e1-2e2 向量BC=4e1+e2 向量CD=8e1-9e2 证明ABC三点共线设向量e1 e2 是平面内一组基地,如果向量AB等于3e1-2e2 向量BC=4e1+e2 向量CD=8e1-9e2 向量CD 证明ABC三点共
定理证明怎样证明:如果e1,e2是同一平面内的两个不共线向量.那么对于这一平面内的任一向量a,仅存在一对实数λ1,λ2,使a=λ1e1+λ2e2.重点是证明,为什么是仅存在一对.一楼的很强了,不过要是能用
设e1,e2是平面内所有向量的一组基底,则下列四组向量中,不能作为基底的是( ).A.e1+e2和e1-e2 B.3e1-2e2和4e2-6e1 C.e1+2e2和e2+2e1 D.e2和e1+e2
设e1和e2是两个不共线的非零向量,如果向量AB=e1+e2,向量BC=2e1+8e2,向量CD=3(e1-e2),求证A,B,D三点共线求实数k的值,使向量ke1+e2和e1+ke2共线
已知e1和e2是一组平面向量的基底,若ke1+e2与12e1+te2共线,求满足条件的所有正整数k,t的值
已知向量e1和e2不共线,如果向量AB=e1+e2,向量BC=2e1+8e2,向量CD=3e1-3e2,求证A、B、C三点共线2.若模e1=2,模e2=3,e1与e2的夹角为60°,me1+e2与e1-e2垂直,求实数m的值是ABD共线。
设e1 e2是平面内的一组基地,如果向量AB=3e1-2e2 向量BC=4e1+e2 向量CD=8e1-9e2 求证A B D三点共线.
设向量e1 e2 是平面内一组基地,已知向量AB=3e1+ke2,向量BC=4e1+e2向量CD=8e1-9e2,如果ABD三点共线,求k
已知e1和e2是平面内所有向量的一组基底,那么下列四组不能作为一组基底的是A.e1和e1+e2 B.e1-2e2和e2-2e1C.e1-2e2和4e2-2e1D.e1-e2和e1+e2为什么选C?
若e1,e2是表示平面内所有向量的一组基底则下面各组向量中不能作为基底的是(1)e1-e2和1/2e1+1/2e2 (2)1/2e1-1/3e2和3e1-2e2 (3)e1+1/3e2和3e1+e2
空间向量定理证明如何证明向量a=λ1向量e1+λ2向量e2+λ3向量e3的λ1 λ2 λ3是唯一的?e1 e2 e3是单位向量
已知e1和e2是平面内所有向量的一组基底,那么下列四组不能作为一组基底的是A.e1-e2和e1+e2B.3e1-2e2和4e1-6e2C.e1-2e2和e1-2e2D.e2和e1+e2希望有正确的答案详细的原因解释与过程
平面向量基本定理若e1和e2不共线,且a=-e1+3e2,b=4e1+2e2,c=-3e1+12e2,则向量a可用向量b,c表示为a=?