一道高中数学题(关于向量)若o是三角形ABC内一点,OA+OB+OC=0,求证O为三角形ABC的重心.(OA,OB,OC都是向量)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 05:44:47

一道高中数学题(关于向量)若o是三角形ABC内一点,OA+OB+OC=0,求证O为三角形ABC的重心.(OA,OB,OC都是向量)
一道高中数学题(关于向量)
若o是三角形ABC内一点,OA+OB+OC=0,求证O为三角形ABC的重心.
(OA,OB,OC都是向量)

一道高中数学题(关于向量)若o是三角形ABC内一点,OA+OB+OC=0,求证O为三角形ABC的重心.(OA,OB,OC都是向量)
取AB中点为D,OA+OB=2 OD,(平行四边形对角线互相平分)又因为OA+OB+OC=0,所以OC=2 OD且共线,同理找BC中点为S,AC中点为W,OA=2 OS且共线,OB=2 OW且共线.D,S,W分别为AB,BC,AC中点,所以O为三角形重心.
谢谢~

取BC中点D,连结并延长OD至E,使DE=OD
于是四边形BOCE是平行四边形
所以向量OB=向量CE
所以向量OB+向量OC=向量CE+向量OC=向量OE
而由向量OA+向量OB+向量OC=0得
向量OB+向量OC=-向量OA=向量AO
所以向量AO和向量OE共线
所以A、O、E三点共线
而D在OE上
所以A、O、D三点共线...

全部展开

取BC中点D,连结并延长OD至E,使DE=OD
于是四边形BOCE是平行四边形
所以向量OB=向量CE
所以向量OB+向量OC=向量CE+向量OC=向量OE
而由向量OA+向量OB+向量OC=0得
向量OB+向量OC=-向量OA=向量AO
所以向量AO和向量OE共线
所以A、O、E三点共线
而D在OE上
所以A、O、D三点共线
而点D又是BC中点
所以AD(即AO)是三角形ABC中BC边中线
同理可证BO是AC边中线,CO是AB边中线
所以点O是三角形ABC的重心

收起

取AB中点为D,OA+OB=2 OD,(平行四边形对角线互相平分)又因为OA+OB+OC=0,所以OC=2 OD且共线,同理找BC中点为S,AC中点为W,OA=2 OS且共线,OB=2 OW且共线。D,S,W分别为AB,BC,AC中点,所以O为三角形重心。
取BC中点D,连结并延长OD至E,使DE=OD
于是四边形BOCE是平行四边形
所以向量OB=向量CE
所以向...

全部展开

取AB中点为D,OA+OB=2 OD,(平行四边形对角线互相平分)又因为OA+OB+OC=0,所以OC=2 OD且共线,同理找BC中点为S,AC中点为W,OA=2 OS且共线,OB=2 OW且共线。D,S,W分别为AB,BC,AC中点,所以O为三角形重心。
取BC中点D,连结并延长OD至E,使DE=OD
于是四边形BOCE是平行四边形
所以向量OB=向量CE
所以向量OB+向量OC=向量CE+向量OC=向量OE
而由向量OA+向量OB+向量OC=0得
向量OB+向量OC=-向量OA=向量AO
所以向量AO和向量OE共线
所以A、O、E三点共线
而D在OE上
所以A、O、D三点共线
而点D又是BC中点
所以AD(即AO)是三角形ABC中BC边中线
同理可证BO是AC边中线,CO是AB边中线
所以点O是三角形ABC的重心

收起

一道高中数学题(关于向量)若o是三角形ABC内一点,OA+OB+OC=0,求证O为三角形ABC的重心.(OA,OB,OC都是向量) 一道关于空间向量的高中数学题已知 a向量 b向量 c向量 是空间三个不共线的向量,求证它们共面的充要条件是存在三个不全为零的实数l向量m 向量 n向量 使la+nb+nc= 0(向量). 一道数学题 已知G是三角形ABC的重心,O是空间任一点,若向量OA+向量OB+向量OC=λOG,求λ的值 一道有关平面向量的高一数学题O是平面上的坐标原点,A,B,C是平面上三点(不在一条直线上).且向量ab^2+向量oc^2=向量ac^2+向量ob^2=向量bc^2+向量oa^2求证 o是三角形abc的垂心 高中数学题(1)若向量a+向量c与向量b都是非零向量,则向量a+向量b+向量...高中数学题(1)若向量a+向量c与向量b都是非零向量,则向量a+向量b+向量c=0,是向量b平行向量(a+c)的充分而不必要 求解,一道高中数学题解法在三角形ABC中,向量AB=(1,2),AC=(-x,2x)x>0 若三角形ABC的周长是6倍根号5,问x是多少? 一道关于解三角形的高中数学题…… 一道关于圆锥曲线的高中数学题已知椭圆中心为坐标原点O,交点在X轴上,斜率为1且过椭圆右焦点F的直线L交椭圆于A,B两点,向量OA+向量OB与向量n=(1,3)垂直1.求椭圆的离心率e2.设M为椭圆上任意 求急 一道数学题(平面向量)点O是三角形ABC所在平面内的一点,满足向量OA*OB=OB*OC=OC*OA,求证:点O是三角形ABC的外心. 高中数学题 三角形ABC中,D是BC中点,则下列成立的是? A、AB向量+BC向量=AD向量 B、高中数学题三角形ABC中,D是BC中点,则下列成立的是?A、AB向量+BC向量=AD向量B、AB向量-BC向量=AD向量C、AB向量+AD向量 关于高中向量定理问题.书本中公式是:向量OP=向量OM+x向量MA+y向量MB.向量OP=x向量OA+y向量OB+z向量OM.现在遇到一道题目是:已知A,B,M三点不共线,对于平面ABM外的任一点O,确定在下列各条件 高中数学题(向量的数量积)1.若向量a的绝对值为1,向量b的绝对值为2,a与b的夹角为60度,若(3a+5b)垂直于(ma-b),则m的值为-----------2.已知向量AB*向量BC+(向量AB)平方=0,则三角形ABC一定是-------- 一道数学题,关于单位向量已知a是平面内的单位向量,若向量b满足b·(a-b)=0 ,则|b|的取值范围是__谢谢啦!请告诉我答案. 征集向量与三角形四心有关的高中数学题若O为三角形ABC的外心,且满足(OB-OC)*(OB-OC-2 OA)=0.(都为向量) 则三角形形状是有没有类似的题, 有一道关于向量数学题, 有一道关于向量的高中数学题不会,请学霸or老师帮忙(第一个题,就是G为三角形ABC内一点)要详细答案 一道高中数学题(三角)在三角形ABC中,内角A,B,C所对的边分别为a,b,c,已知向量CA*向量CB=c^2-(a-b)^2 (1)求cosC的值(2)若A是钝角,求sinB的取值范围 希望高手给出详细解答,谢谢 一道简单高中数学题(请进!请详细说明!谢谢!)在三角形ABC中,“向量AB*向量BC答案是B,想不通啊!也不知道答案对不对啊?