已知椭圆的中心为O,长轴、短轴的长分别为2a,2b〔a〉b〉0〕,A ,B分别为椭圆上的两点,且OA⊥OB.求△AOB面积的最大值和最小值.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 13:38:34

已知椭圆的中心为O,长轴、短轴的长分别为2a,2b〔a〉b〉0〕,A ,B分别为椭圆上的两点,且OA⊥OB.求△AOB面积的最大值和最小值.
已知椭圆的中心为O,长轴、短轴的长分别为2a,2b〔a〉b〉0〕,A ,B分别为椭圆上的两点,且OA⊥OB.
求△AOB面积的最大值和最小值.

已知椭圆的中心为O,长轴、短轴的长分别为2a,2b〔a〉b〉0〕,A ,B分别为椭圆上的两点,且OA⊥OB.求△AOB面积的最大值和最小值.
设OA的所在直线方程为y=kx,则OB所在直线方程为y=-x/k;
它们与椭圆的交点A、B坐标(xa,ya)、(xb,yb)满足
xa^2=1/[1/a^2+k^2/b^2]
ya^2=k^2/[1/a^2+k^2/b^2]
xb^2=1/[1/a^2+1/(k^2b^2)]
yb^2=1/[k^2/a^2+1/b^2]
OA^2=xa^2+ya^2=(1+k^2)/[1/a^2+k^2/b^2]
OB^2=xb^2+yb^2=(1+1/k^2)/[1/a^2+1/(k^2b^2)]
1/OA^2+1/OB^2=[1/a^2+k^2/b^2]/(1+k^2)+[1/a^2+1/(k^2b^2)]*k^2/(1+k^2)
=1/a^2+1/b^2为定值.
以中心为极点,x轴为极轴建立极坐标系
方程为ρ^2(cosθ)^2/a^2+ρ^2(sinθ)^2/b^2=1
1/ρ^2=(cosθ)^2/a^2+(sinθ)^2/b^2
设A(ρ1,θ),由OA⊥OB得B(ρ2,θ+π/2)
1/OA^2+1/OB^2=1/ρ1^2+1/ρ2^2
=(cosθ)^2/a^2+(sinθ)^2/b^2+(cos(θ+π/2))^2/a^2+(sin(θ+π/2))^2/b^2
=(cosθ)^2/a^2+(sinθ)^2/b^2+(sinθ)^2/a^2+(cosθ)^2/b^2
=1/a^2+1/b^2
(2)S=1/2|OA|*|OB|

用极坐标

A可表示为(asinθ,bcosθ)

已知椭圆的中心为O,长轴.短轴的长分别为2a,2b(a>b>0),A,B分别为椭圆上的两 椭圆中心O,长轴,短轴分别为2a,2b,A.B分别为椭圆的两点,OA垂直OB,求证 面积的最大值椭圆中心O,长轴,短轴分别为2a,2b,A.B分别为椭圆的两点,OA垂直OB,求证三角形AOB的最大值和最小值(提示)用极坐 椭圆中心O,长轴,短轴分别为2a,2b,A.B分别为椭圆的两点,OA垂直OB,求证1/OA的模平方+1/OB的模平方为定值 高中数学选修4-4 课后习题已知椭圆的中心为O.长轴,短轴的长分别为2a,2b(a>b>0),A,B分别为椭圆上的两点,且OA垂直OB.(1)证明OA OB的倒数的平方和为一定值.(2)求三角形OAB的面积最大和最小值. 已知椭圆的中心为O,长轴.短轴的长分别为2a,2b(a>b>0),A,B分别为椭圆上的两点,且OA垂直OB(1)求证:1/|OA|的平方 + 1/|OB|的平方 为定值;(2)求三角形AOB面积的最大值和最小值 已知椭圆中心为O,长轴,短轴的长分别为2a,2b(a>b>0),A,B分别为椭圆上的两点,且OA⊥OB,求证:【1/(OA平方)】+【1/(OB)平方】为定值 已知椭圆的中心为O,长轴、短轴的长分别为2a,2b〔a〉b〉0〕,A ,B分别为椭圆上的两点,且OA⊥OB.求△AOB面积的最大值和最小值. 圆锥曲线的最值问题(用极坐标求解)已知椭圆中心为O,长轴、短轴分别为2a,2b(a>b>0),A,B分别为椭圆上的两点,且OA⊥OB.求△AOB面积的最大值和最小值. 一道经典椭圆题 用极坐标做 已知椭圆中心为O,长轴、短轴的长分别为2a,2b(a>b>0),A,B分别为椭圆上的两点,且OA垂直OB.(1)求证;1÷|OA|^2+1÷|OB|^2为定值.(2)求△AOB面积的最大值和最 已知离心率为4/5的椭圆的中心在原点,焦点在x轴上,双曲线以椭圆的长轴为实轴,短轴为虚轴,若双曲线焦...已知离心率为4/5的椭圆的中心在原点,焦点在x轴上,双曲线以椭圆的长轴为实轴,短轴为 已知椭圆中心再原点,焦点在x轴上,焦距为6,长轴等于短轴的2倍,求这椭圆的方程 已知离心率为4/5的椭圆的中心在原点,焦点在x轴上,以椭圆的长轴为实轴,短轴为虚轴的双曲线的焦距为2√34(1)求椭圆及双曲线的方程(2)设椭圆的左右顶点分别为A、B,在第二象限内取双曲 一道关于椭圆定值的问题!(难)椭圆中心O,长轴,短轴分别为2a,2b,A.B分别为椭圆的两点,OA垂直OB,求证:1/OA的模平方+1/OB的模平方为定值.(注:θ的几何意义别搞错了!)蓝天秋菊 的几何方法, 已知长轴为a短轴为b怎样求椭圆的焦距? 已知椭圆C的中心为坐标原点O,一个长轴端点为(0,2),短轴端点和焦点组成的四边行为正方行,经过右焦点的直线L与椭圆C交于A.B两点,且|AB|=8/3.1,求椭圆C的离心率及其标准方程,2,求直线L的方程 已知椭圆中心在原点,长轴在X轴上,且椭圆短轴的两个三等分点与一个焦点构成正三角形,两条准线间的距离为8.求(1)标准方程(2)若直线Y=KX+2与椭圆交于A B两点,当K为何值时,OA垂直OB(O为坐 已知椭圆的长轴为短轴的3倍,并且经过点(3.0)求椭圆的标准方程. 已知椭圆的长轴为短轴的3倍并且经过(3.0)求椭圆标准方程