初二几何求教
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 19:36:38
初二几何求教
初二几何求教
初二几何求教
连接CP,
∵ABCD是正方形 ,BD是对角线
∴AB=BC ∠ABP=∠CBP=45°
又∵BP=BP
∴△ABP≌△BCP
∴ AP=PC ∠BAP=∠PCB
∵AP⊥EF
∴∠APG=∠EBG=90度,所以
∴∠BAP=∠GEB(∠PEB)
∴∠PCB=∠GEB
∴△EPC是等腰三角形
∴PE=PC=AP
∴△APE是等腰直角三角形
∴AP=√(AE²/2)=√(8/2)=2
2、 连接AF
∵∠ADC=∠APF=90°
∴A、P、F、D四点共圆
∴∠PAF=∠PDF=45°
∵△APE是
∴∠EAB+∠BAP+∠PAF=∠EAF=90° (EA⊥AF)
∵∠DAB=90°
∴∠BAD+∠EAB=∠EAF+∠FAD即∠EAB=∠FAD
在△ADF和△ABE中
AD=AB ∠EAB=∠FAD ∠ADF=∠ABE=90°
∴△ADF≌△ABE
∴DF=BE
∴EC=BE+BC=DF+AB
缺个条件,正方形边长为2,或者AE=2根号2的正方形边长