已知a为实数,且函数f(x)=x3-ax2-4x+4a (1)求导函数f(x) (2)若f(-1)=0,求函数f(x)在[-2,2]上的最大值...已知a为实数,且函数f(x)=x3-ax2-4x+4a (1)求导函数f(x) (2)若f(-1)=0,求函数f(x)在[-2,2]上的最大值和最小值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 22:58:24

已知a为实数,且函数f(x)=x3-ax2-4x+4a (1)求导函数f(x) (2)若f(-1)=0,求函数f(x)在[-2,2]上的最大值...已知a为实数,且函数f(x)=x3-ax2-4x+4a (1)求导函数f(x) (2)若f(-1)=0,求函数f(x)在[-2,2]上的最大值和最小值
已知a为实数,且函数f(x)=x3-ax2-4x+4a (1)求导函数f(x) (2)若f(-1)=0,求函数f(x)在[-2,2]上的最大值...
已知a为实数,且函数f(x)=x3-ax2-4x+4a (1)求导函数f(x) (2)若f(-1)=0,求函数f(x)在[-2,2]上的最大值和最小值

已知a为实数,且函数f(x)=x3-ax2-4x+4a (1)求导函数f(x) (2)若f(-1)=0,求函数f(x)在[-2,2]上的最大值...已知a为实数,且函数f(x)=x3-ax2-4x+4a (1)求导函数f(x) (2)若f(-1)=0,求函数f(x)在[-2,2]上的最大值和最小值
f'(x)=3x^2-2ax-4
f(-1)=-1-a+4+4a=3a+3=0,a=-1.
f(x)=x^3+x^2-4x-4,
f'(x)=3x^2+2x-4=3[x-(-1-√13)/3][x-(-1+√13)/3],
∴所求的最大值是(-70+26√13)/27,
最小值是(-70-26√13)/27.

f(x) = x³ - ax² - 4x + 4a
(1) f'(x) = 3x² - 2ax - 4
(2) f(-1) = 0
(-1)³ - a*(-1)² - 4*(-1) + 4a = 0
a = -1
f(x) = x³ + x² - 4x - 4

f'(x)= 3x2-2ax-4 (2) a=-1 f'(x)=0的根为x1,x2 f'(-2)>0,f'(2)>0 f(x)在[-2,x1],是增函数,[x1,x2]上是减函数,[x2,2],是增函数 所以最大值是f(x1)与f(2)中的较大者,最小值是f(x2)与f(-2)中的较小者

已知函数f(x)=x3-ax在【1 +∞)上是单调增函数,求实数a的最大值 已知函数f(x)=x3-ax2+6ax在(-1,2)上为减函数,求实数a的取值范围 已知函数f(x)=x3+ax+7,且f(-3)=10,那么f(3)的值为? 已知函数f(x)=x3+2x2-ax+1 (1)若函数f(x)在点(1,f(1))处的切线斜率为4,求实数a的值 (2)若函数g(x)=f(x)导已知函数f(x)=x3+2x2-ax+1(1)若函数f(x)在点(1,f(1))处的切线斜率为4,求实数a的值(2)若函数g(x)=f(x)导数在 已知函数f(x)=x3-3/2ax2+b,a,b为实数,1 已知f(x)= -x3+ax在(0,1)上是增函数,求实数a的取值范围 已知f(x)=-x3+ax在(0,1)上是减函数,求实数a的取值范围 已知函数f(X)=x3+ax-8,且f(-2)=10,求f(2) 已知函数f(x)=x3+3ax-1的导函数为f′(x),g(x)=f′(x)-ax-3.已知函数f(x)=x3+3ax-1的导函数为f′(x),g(x)=f′(x)-ax-3.(1)若x•g′(x)+6>0对一切x≥2恒成立,求实数a的取值范围;(2)若对满足 已知二次函数 f(x)=ax^+bx(a不等于零),且f(x+1)为偶函数,定义:满足f(x)=x的实数x 已知函数f(x)=ax∧2+bx+c a不为0 且f(x)=2x没有实数根 那么f(f已知函数f(x)=ax∧2+bx+c a不为0 且f(x)=2x没有实数根 那么f(f(x))=4x的实数根个数为? 已知a为实数,且函数f(x)=x3-ax2-4x+4a (1)求导函数f(x) (2)若f(-1)=0,求函数f(x)在[-2,2]上的最大值...已知a为实数,且函数f(x)=x3-ax2-4x+4a (1)求导函数f(x) (2)若f(-1)=0,求函数f(x)在[-2,2]上的最大值和最小值 已知函数f(x)=ax^5-x(a<0),若x1,x2,x3∈R,且x1+x2>0,x2+x3>0,x3+x1>0,则f(x1)+f(x2)+f(x3)的值 已知函数f(x)=ax∧2+bx+1(a,b为实数),x∈R,F(x)={f(x)(x>0)/-f(x)(x0且f(x)为偶函数,判断F(m)+F(n)能否大于零 已知函数f(x)=ax²+bx+1(a,b为实数),x∈R,F(x)={f(x) (x>0) ;-f(x) (x0且f(x)为偶函数,判断F(m)+F(n)能否大于0? 已知函数f(x)=ax^2+bx+1(a,b为实数),x属于R,F(x)=f(x) x>0或-f(x) x0,且f(x)为偶函数,判断F(m)+F(n)能否大于0 已知函数f(x)=ax^2+bx+1(a,b为实数),x€R,F(x)={f(x) (x>0).-f(x) (x0且f(x)为偶函数,判断F(m)+F(n)能否大于零? 已知函数f(x)=-x3+ax在[1,+∞)上是减函数,则a的最大值为