F1、F2是双曲线的左、右焦点,P是双曲线上一点,且∠F1PF2=60°,S△PF1F2=12√3,离心率为2,求此双曲线方程

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 01:53:33

F1、F2是双曲线的左、右焦点,P是双曲线上一点,且∠F1PF2=60°,S△PF1F2=12√3,离心率为2,求此双曲线方程
F1、F2是双曲线的左、右焦点,P是双曲线上一点,且∠F1PF2=60°,S△PF1F2=12√3,离心率为2,求此双曲线方程

F1、F2是双曲线的左、右焦点,P是双曲线上一点,且∠F1PF2=60°,S△PF1F2=12√3,离心率为2,求此双曲线方程
S△F1PF2=1/2*PF1*PF2*sin60=12 (正弦面积公式)
求得PF1*PF2=48
cos60=(PF1的平方+PF2的平方-4*C的平方)/2*PF1*PF2 (余弦定理)
PF1-PF2的绝对值=2a 两边平方 求得PF1的平方+PF2的平方=4*a的平方+96
离心率e=c/a=2 两边平方得c的平方/a的平方=4
联立求得a平方=4 b平方=12
(公式的特殊符号太多,不好表达,抱歉了,以后有问题随时找我哦)

已知双曲线的左、右焦点分别为F1、F2,P是双曲线上一点,且PF1⊥PF2,P F1P F2 =4ab,则双曲线的离心率是 ▲ . 双曲线的公式请问是|PF1|-|PF2|=2a还是|PF2|-|PF1|=2a P为双曲线上的一点,F1为双曲线的左焦点,F2为双曲线的右焦点 已知点P是双曲线左支上一点,F1,F2分别是左、右焦点,焦距为2C,求三角形PF1F2的内切圆心的横坐标. 已知双曲线 的左、右焦点分别为F1,F2,若在双曲线的右支上存在一点P,使得|PF1|=3|PF2|,则双曲线的离心 双曲线的左,右焦点为F1,F2,点P在双曲线的右支上,且PF1=4PF2,求双曲线离心率e的最大值 F1,F2 是双曲线的焦点若双曲线右支存在P点满足|PF2|=|F1F2|求渐近线 知双曲线 的左,右焦点分别为 ,点 在双曲线的右支上,且 ,则此双曲线的离心率 的最大值是知双曲线 x^2/a^2+b^2/2=1 的左,右焦点分别为 F1 F2,点 P在双曲线的右支上,且|PF1|=4|PF2| ,则此双曲线的离心 F1、F2是双曲线的左、右焦点,P是双曲线上一点,且∠F1PF2=60°,S△PF1F2=12√3,离心率为2,求此双曲线方程 双曲线x^2/16 -y^2/9=1上1点p到左焦点f1的距离是10,则点p到右焦点f2的距离是..(详细说明) 设F1,F2分别为双曲线x^2/16-y^2/20=1的左,右焦点,点P在双曲线上,若点P到焦点F1的距离等于9,则点P到焦点F2的距离为().答案是17,但我觉得是1或17,问为什么1不可以 点P是双曲线C:x²/a²-y²/b²=1上的点,F1,F2是双曲线的左、右焦点,那么向量PF1·向量PF2的最小值为 已知F1,F2是双曲线x^2/9-y^2/16=1的左、右焦点,点P在双曲线上,且|PF1 |*|PF2|=32 ,求∠F1PF2的大小 已知双曲线x^2/9-y^2/16=1的左、右焦点分别是F1、F2,P为双曲线右支上一点,且|PF2|=|F1F2|,则三角形PF1F2的面积是:(只要答案就好) 设F1、F2分别为双曲线X^2/4-Y^2=I的左、右焦点,点P在双曲线上满足∠F1PF2=90°,那么△F1PF2的面积是 设P是双曲线x²/9—y²/16=1上一点,F1,F2分别是双曲线的左、右焦点,若lPF1l=7,则lPF2l=? 9.已知F1,F2分别为双曲线 (a>0,b>0)的左,右焦点,P为双曲线右支上一点,且满足|PF2|=|F1F2|,若直线PF1与圆x9.已知F1、F2分别为双曲线 (a>0,b>0)的左、右焦点,P为双曲线右支上一点,且满足|PF2|=|F1F 已知F1,F2是双曲线x2/2-y2=1的左右焦点,PQ为右支上两点已知F1、F2是双曲线x2/2-y2=1的左、右两焦点,P、Q为右支上的两点,直线PQ过F2,且倾斜角为a,则|PF1|+|QF1|-|PQ|的值为(  ).  (A)4   (B)8   (C) F1,F2 是双曲线的焦点若双曲线右支存在P点满足|PF2|=|F1F2|且F2到直线PF1的距离等于实长轴求渐近线