如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.求证:1.△APC≌△BQC2.△PCQ是等边三角形

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 09:51:14

如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.求证:1.△APC≌△BQC2.△PCQ是等边三角形
如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,
AD与BC交于点P,BE与CD交于点Q,连接PQ.
求证:1.△APC≌△BQC
2.△PCQ是等边三角形

如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.求证:1.△APC≌△BQC2.△PCQ是等边三角形
1依题意可知:CD//AB,BC//DE,则△CQE∽△ABE,△ACP∽△AED,设左边等边三角形边长为a,右边等边三角形边长为b,则CQ:AB=CE:AE=CE:(AC+CE),即CQ:a=b:(a+b),CQ=ab:(a+b),同理可证
CP=ab:(a+b),则CQ=CP,又AC=BC,∠BCQ=180°-60°*2=60°=∠ACP,故△APC≌△BQC.
2因CQ=CP,∠PCQ=60°,故△PCQ为等边三角形.

△APC≈△BQC是面积还是周长啊

AB=BC=AC
CE=ED=CD
∠ACD=∠BCE
∴BCE≌ACD
∴BE=AD
∠CBE=∠DAC
∠ACB=∠BCD=∠DCE=60º
∴BCQ≌ACP
∴AP=BQ CQ=CP
∵∠PCQ=60º
∴PCQ为正三角形
∴∠PCQ=60º=∠DCE
∴PQ∥AE...

全部展开

AB=BC=AC
CE=ED=CD
∠ACD=∠BCE
∴BCE≌ACD
∴BE=AD
∠CBE=∠DAC
∠ACB=∠BCD=∠DCE=60º
∴BCQ≌ACP
∴AP=BQ CQ=CP
∵∠PCQ=60º
∴PCQ为正三角形
∴∠PCQ=60º=∠DCE
∴PQ∥AE
另,DE≠DP
BCE绕C逆时针旋转60º得到ACD
∴∠AOB=60

收起

如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交与点O如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交与点O,AD与BC 如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE、AD与BE交于点O, C为线段AE上一动点(不与点A,E重合)在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交与点O,如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交与点O,AD l;如图,C为线段AE上一动点(不与点A、E重合).如图,C为线段AE上一动点(不与点A、E重合).在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于O,AD与BE交与点P,BE与CD交于点Q,连接CO.现有5个结论;1 如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交与点O,AD与BC交与点P,BE与CD交与点Q,连接PQ求证:PQ//AE 如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交与点O,AD与BC交与点P,BE与CD交与点Q,连接PQ证∠AOB=60° 如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.求证:1.△APC≌△BQC2.△PCQ是等边三角形 如图,C为线段AE上一动点(不与A、E重合),在AE同侧分别作正三角形ABC和正三角形CDEAD与BC交于点P,BE与CD交于点Q,连接PQ求证:(1)△ACD≌△BCE.(2)△PCQ为等边三角形. 如图,C为线段AE上一动点,(不与A,E重合),在AE同侧分别作等边三角形ABC和CDE.AD与BC交于点P,BE与CD交于Q,l连接PQ,连接OC【图片上没有连= =】证明:OC平分∠AOE如果证明不出来证明这个结论错误也 如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交与点O,AD与BC交与点P,BE与CD交与点Q,连接PQ证明:PQ//AE,AP=BQ,图片网上都有,我上传不起,有跟我一样的题 如图,C为线段AE上一动点(不与点A、E重合).在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于H,AD与BC交于P,BE与CD交于Q,连接PQ、CH.如何证明HC平分啊HC平分角AHE 如图,C为线段AE上一动点(不与点A、E重合).在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于H,AD与BC交于P,BE与CD交于Q,连接PQ、CH.则∠AHC=∠CHE吗?并说明理由? .如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:① AD=BE; ② PQ‖AE; ③ AP=BQ; ④ DE=DP 如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.(1)判断△PQC的形状,并说明理由.(2)诺AE=4当AC为何值 如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE、AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ‖AE;③AP=BQ;④DE=DP;⑤∠AO 如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,以下五个结论:1,AD=BE;2,PQ∥AE;3.AP=BQ;5.∠AOB=60° 请老师帮我解决这道几何题.如图,C为线段AE上一动点(不与点A E重合)在AE同侧分别做等边△ABC和等边△CDE,AD与BE交于H,则∠AHB=多少度 请老师帮我解决这道几何题.如图,C为线段AE上一动点(不与点A E重合)在AE同侧分别做等边△ABC和等边△CDE,AD与BE交于H,则∠AHB=多少度