关于二次函数的超难题目答题时请说明好辅助线等.在平面直角坐标系xOy中,抛物线y=-x^2+bx+c与x轴交于A(-1,0),B(-3,0).与y轴交于点C,连接BC.若点Q在直线BC上方的抛物线上,求点Q到直线BC距离的最大值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 15:14:53

关于二次函数的超难题目答题时请说明好辅助线等.在平面直角坐标系xOy中,抛物线y=-x^2+bx+c与x轴交于A(-1,0),B(-3,0).与y轴交于点C,连接BC.若点Q在直线BC上方的抛物线上,求点Q到直线BC距离的最大值
关于二次函数的超难题目
答题时请说明好辅助线等.在平面直角坐标系xOy中,抛物线y=-x^2+bx+c与x轴交于A(-1,0),B(-3,0).与y轴交于点C,连接BC.若点Q在直线BC上方的抛物线上,求点Q到直线BC距离的最大值及点Q坐标.…很有技术含量吧!如果做不出,给个思路也行.

关于二次函数的超难题目答题时请说明好辅助线等.在平面直角坐标系xOy中,抛物线y=-x^2+bx+c与x轴交于A(-1,0),B(-3,0).与y轴交于点C,连接BC.若点Q在直线BC上方的抛物线上,求点Q到直线BC距离的最大值
先把A,B坐标带入,求得:b=-4,c=
原函数即为:y=-x^2-4x-3
求导,得y'=-2x-4
当在Q点的切线斜率=BC斜率时,距离最大
即:-2x-4=-1,解得:x=-3/2
所以,当Q为(-3/2,3/4)时,有最大距离(9根号2)/8

我做过,这是标准答案,嘿嘿,图太多..........