已知函数f(x)=ax3+bx+c(a不等于0)为奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,f(x)的导数f '(x)的最小值为-12.求(1)a,b,c.(2)函数f(x)在[-1,3]上的最大值和最小值.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/02 14:30:19

已知函数f(x)=ax3+bx+c(a不等于0)为奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,f(x)的导数f '(x)的最小值为-12.求(1)a,b,c.(2)函数f(x)在[-1,3]上的最大值和最小值.
已知函数f(x)=ax3+bx+c(a不等于0)为奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,
f(x)的导数f '(x)的最小值为-12.
求(1)a,b,c.
(2)函数f(x)在[-1,3]上的最大值和最小值.

已知函数f(x)=ax3+bx+c(a不等于0)为奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,f(x)的导数f '(x)的最小值为-12.求(1)a,b,c.(2)函数f(x)在[-1,3]上的最大值和最小值.
(Ⅰ)∵f(x)为奇函数,
∴f(-x)=-f(x)
即-ax3-bx+c=-ax3-bx-c
∴c=0
∵f'(x)=3ax2+b的最小值为-12
∴b=-12
又直线x-6y-7=0的斜率为16
因此,f'(1)=3a+b=-6
∴a=2,b=-12,c=0.
(Ⅱ)f(x)=2x3-12x.f′(x)=6x2-12=6(x+2)(x-2),列表如下:
所以函数f(x)的单调增区间是(-∞,-2)和(2,+∞)
∵f(-1)=10,f(2)=-82,f(3)=18
∴f(x)在[-1,3]上的最大值是f(3)=18,最小值是f(2)=-82.

f(x)=ax3+bx+c(a不等于0)为奇函数
c=0
f(x)=ax3+bx
f'(x)=3ax^2+b
在点(1,f(1))处切线与直线x-6y-7=0垂直
把点代入得
3a+b=-6  (1)
导数f '(x)的最小值为-12,即
b=-12
所以a=4
f(x)=4x^3-12x
f')x)=12x^...

全部展开

f(x)=ax3+bx+c(a不等于0)为奇函数
c=0
f(x)=ax3+bx
f'(x)=3ax^2+b
在点(1,f(1))处切线与直线x-6y-7=0垂直
把点代入得
3a+b=-6  (1)
导数f '(x)的最小值为-12,即
b=-12
所以a=4
f(x)=4x^3-12x
f')x)=12x^2-12=0
x=±1
f(1)=-8,f(-1)=16
f(3)=96
所以函数f(x)在[-1,3]上的最大值96和最小值-8

收起

f(x)=ax^3+bx+c(a不等于0)为奇函数, 则c=0
f'(x)=3ax^2+b
在点(1,f(1))处的切线与直线x-6y-7=0垂直, 即f'(1)=3a+b=-6
f '(x)的最小值为-12, 即a>0, b=-12,
由上,解得:a=2
故有:f(x)=2x^3-12x, , a=2, b=-12, c=0
2)f'(x)=...

全部展开

f(x)=ax^3+bx+c(a不等于0)为奇函数, 则c=0
f'(x)=3ax^2+b
在点(1,f(1))处的切线与直线x-6y-7=0垂直, 即f'(1)=3a+b=-6
f '(x)的最小值为-12, 即a>0, b=-12,
由上,解得:a=2
故有:f(x)=2x^3-12x, , a=2, b=-12, c=0
2)f'(x)=6x^2-12=6(x^2-2)=0, 得极值点:x=-√2, √2
极小值f(√2)=4√2-12√2=-8√2
极大值f(-√2)=-f(√2)=8√2, 不在区间[-1,3]内
f(-1)=-2+12=10
f(3)=54-36=18
因此在[-1,3]的最大值为f(3)=18, 最小值为:f(√2)=-8√2

收起

函数为奇函数:f(-x)=-f(x)
即:-ax3-bx+c=-ax3-bx-c 那么 c=0
函数的导数为:f'(x)=3ax2+b
导数存在最小值说明曲线方向朝上a为正值 当x=0时 导函数为最小值 那么b=-12
又:在(1,f(1))处切线与x-...

全部展开

函数为奇函数:f(-x)=-f(x)
即:-ax3-bx+c=-ax3-bx-c 那么 c=0
函数的导数为:f'(x)=3ax2+b
导数存在最小值说明曲线方向朝上a为正值 当x=0时 导函数为最小值 那么b=-12
又:在(1,f(1))处切线与x-6y-7=0垂直 (1,f(1))处斜率为-6
则f'(1)=3a-12=-6 a=2

收起

已知函数f(x)=ax4+bx+c(a不等于零)是偶函数,判断函数g(x)=ax3+bx2+cx的奇偶性 已知函数f(x)=ax2+bx+c(a≠0)是偶函数,那么g(x)=ax3+bx2+cx是(  ) 已知f(x)=ax平方+bx+c (a不等于0)是偶函数,则g(x)=2ax3-bx平方-是什么函数 已知函数f(x)=ax3+bx+c在点x=2处取得极值c-16. (Ⅰ)求a,b的值; (Ⅱ)若f(已知函数f(x)=ax3+bx+c在点x=2处取得极值c-16.(Ⅰ)求a,b的值;(Ⅱ)若f(x)有极大值28,求f(x)在[-3,3]上的最 已知函数f(x)=ax2+bx+c(a≠0)是偶函数,那么g(x)=ax3+bx2+cx( )已知函数f(x)=ax2+bx+c(a≠0)是偶函数,那么g(x)=ax3+bx2+cx(  )A.奇函数    B.偶函数   C. 已知函数f(X)=ax3+x2+bx(a.bg属于R),g(x)=f(x)+f'(x)是奇函数,则f(x)=? 已知函数f(x)=ax2+bx+c(a≠0)是偶函数,那么g(x)=ax3+bx2+cx(  )   A.奇函数    B求详细解释!~已知函数f(x)=ax2+bx+c(a≠0)是偶函数,那么g(x)=ax3+bx2+cx( 已知函数f(x)=ax的三次方+bx+c在x=2处取得极值c-16已知函数f(x)=ax3+bx+c在点x=2处取得极值c-16.(1)求a,b的值; 函数f(x)=ax3+bx的极值f(1)=4,则a= 已知函数f(x)=ax3+bx2+cx+d的图像如图所示,则( ).A.b 已知函数f(x)=ax3-bx+1,a,b∈R,若f(-2)=-1,试求f(2) 已知函数f(x)=ax3+bx+1,常数a,b∈R,且f(4)=0,求f(-4)的值. 已知函数f(x)=ax2+bx+c(a≠0)是偶函数,那么g(x)=ax3+bx2+cx是( )b=0 那么c呢?是偶函数时奇次幂为0 那么常数C呢 已知函数f(x)=ax3+bx+c(a>0)为奇函数,其图像在点(1,f(1))处...已知函数f(x)=ax3+bx+c(a>0)为奇函数,其图像在点(1,f(1))处的切线与直线x-6y-7=0垂直,导数f'(x)的最小值为-12, 1、已知f(x)在实数集上是减函数,若a+b《=0,则下列正确的是A f(a)+f(b)=f(-a)+f(-b)2函数f(x)在区间[-2,3]是增函数,则y=f(x+5)的递增区间是3函数f(x)=ax3(三立方)+bx-3(a,b属于R,且·不同时为 已知函数f(x)=ax3+x2+bx,且f(3)=10,则f(-3)= 已知函数f(x)=ax3-bx+2,且f(3)=2,则f(-3)= 已知三次函数f(x)=ax3+bx2+cx+d (1)当b=3a,c-d=2a时,证明:函数f已知三次函数f(x)=ax3+bx2+cx+d (1)当b=3a,c-d=2a时,证明:函数f(x)的图像关于点(-1,0)对称