定义在(-1,1)上的函数f(x)是奇函数,且当x属于(0,1)时 f(x)=(2^x)/(4^x+1) 1、求f(x)在(-1,1)上的解析式2、判断f(x)在(0,1)上的单调性,并给予证明3、当实数m为何值时,关于x的方程

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 18:53:22

定义在(-1,1)上的函数f(x)是奇函数,且当x属于(0,1)时 f(x)=(2^x)/(4^x+1) 1、求f(x)在(-1,1)上的解析式2、判断f(x)在(0,1)上的单调性,并给予证明3、当实数m为何值时,关于x的方程
定义在(-1,1)上的函数f(x)是奇函数,且当x属于(0,1)时 f(x)=(2^x)/(4^x+1)
1、求f(x)在(-1,1)上的解析式
2、判断f(x)在(0,1)上的单调性,并给予证明
3、当实数m为何值时,关于x的方程f(x)=m在(-1,1)上有解?

定义在(-1,1)上的函数f(x)是奇函数,且当x属于(0,1)时 f(x)=(2^x)/(4^x+1) 1、求f(x)在(-1,1)上的解析式2、判断f(x)在(0,1)上的单调性,并给予证明3、当实数m为何值时,关于x的方程
确实麻烦……
当x属于(-1,0)时
f(x)=-f(-x)=-2^(-x)/(4^(-x)+1)
=-2^x/(1+4^x)
f(x)是定义在R上的奇函数,f(0)=0
f(x)在(-1,1)上的解析式:
x属于(-1,0)时,f(x)=-2^x/(4^x+1)
x属于(0,1)时,f(x)=2^x/(4^x+1)
x=0时,f(x)=0
2)减函数
证明:
01,1-1/2^x1x2>0
所以,1/f(x1)-1/f(x2)>0
x属于(0,1)时,f(x)=2^x/(4^x+1 )>0
所以,f(x2)>f(x1)
f(x)在(0,1)上是减函数
3)
当实数m为何值时,关于x的方程f(x)=m在(-1,1)上有解?
也就是求f(x)的值域
根据f(x)在(0,1)是减函数
而且f(x)是奇函数,所以f(x)在(-1,0)上也是减函数
f(1)=2/5
f(-1)=-2/5
∴-2/5

f(x)是定义在R上的增函数且f(x-1) 函数f(x)=x/x²+1是定义在(-1,1)上的奇函数,用定义证明f(x)在(-1,1)上是增函数 定义在R上的函数f(x)的导函数为f‘(x),已知f(x+1)是偶函数,(x—1)f'(x) 定义在R上的函数f(x)的导函数为f‘(x),已知f(x+1)是偶函数,(x—1)f'(x) 定义在R上的函数f(x)满足2f(x)-f(-x)=3x+1求函数f(x)的解析式 定义在(-1,1)上的函数f(x)是减函数,且满足f(1-a) 定义在(-1,1)上的减函数f(x)是减函数,且满足f(1-a) 定义在区间(-1,1)上的函数f(x)是减函数,且满足f(1-a) 已知函数f(x)是定义在(-1,1)上的减函数,且f(1-2a) 已知定义在(-2,2)上的函数f(x)是减函数,且f(1-a) 定义在R上的函数f(x),满足f(x+1)=-f(x),且在区间[-1,0]上为递增,则( )A、f(3) 设函数f(x)是定义在R上的增函数,令F(x)=f(x)-f(2-x) (1) 求证:F(x)是R上的增函数; (2) 若F(x1)+f(x2)设函数f(x)是定义在R上的增函数,令F(x)=f(x)-f(2-x)(1) 求证:F(x)是R上的增函数;(2) 若F(x1)+f(x2)>0, 导函数(数学)定义在R上的函数f(x),若(x-1)f'(x) 判断 若定义在R上的函数f(x)满足f(2)大于f(1),则函数f(x)是R上的单调增函数若定义在R上的函数f(x)满足f(2)大于f(1),则函数f(x)在R上不是单调减函数若定义在R上的函数f(x)在区间(负无穷大,0】 已知f(x)是定义在(-1,1)上的减函数,且f(2-a)-f(a-3) 已知函数f(x)是定义在(-5,5)上的减函数,试解关于x的不等式f(2x-1)>f(x+1) 定义在区间(-1,1)上的函数f(x)满足2f(x)-f(-x)=lg(x+1),求f(x)的解析式 定义在区间(-1.1)上的函数f(x)满足2f(x)-f(-x)=lg(x+1),则f(x)的解析式为什么?