证(a+1/a)^n-(a^n+1/a^n)≥2^n-2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 19:26:25
证(a+1/a)^n-(a^n+1/a^n)≥2^n-2
证(a+1/a)^n-(a^n+1/a^n)≥2^n-2
证(a+1/a)^n-(a^n+1/a^n)≥2^n-2
看图
证(a+1/a)^n-(a^n+1/a^n)≥2^n-2
设a,n∈N*证明a^2n-(-a)^n≥(a+1)×a^n
因式分解:a^n+1+a^n+a^n-1
a^n+1+a^n-1-2a^n因式分解
a^n+2+a^n+1-a^n因式分解
a^n+2+a^n+1-3a^n因式分解
a^n-1-a^n+1因式分解
计算a^n(a^n+1+a^n+a^n-1)-a^n-1(a^n+1+a^n-a^n-1)
lim((n+1)^a-n^a) (0
(a^n+1)-(a^n-2)等于
(-1)^n*a
(-1)^n *a
(3a^n+1+6a^n+2-9a^n)/3a^n-1
(6a^n+2 +3a^n+1 -9a^n)/3a^n-1
-a^n-(-5a^n-1)-2(a^n-1-3a^n)
(4a^2n-6a^n+1+2a^n)/2a^n 因式分解
计算:(a(1)+a(2)+.+a(n-1))(a(2)+a(3)+.+a(n))-(a(2)+a(3)+.+a(n-1))(a(1)+a(2)+.a(n))
求通项公式.a(n+1)=2a(n)+n