两个焦点分别是F1(-2,0),F2(2,0),且过点P(5/2,-3/2)求椭圆的标准方程
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 15:55:28
两个焦点分别是F1(-2,0),F2(2,0),且过点P(5/2,-3/2)求椭圆的标准方程
两个焦点分别是F1(-2,0),F2(2,0),且过点P(5/2,-3/2)求椭圆的标准方程
两个焦点分别是F1(-2,0),F2(2,0),且过点P(5/2,-3/2)求椭圆的标准方程
∵椭圆的焦点是(-2,0),(2,0)
∴焦点在x轴上,且c=2.
设椭圆的标准方程是x^2/a^2+y^2/b^2=1(a>b>0).
∵a^2-b^2=c^2,c=2
∴a^2=b^2+4
∴椭圆的标准方程是x^2/(b^2+4)+y^2/b^2=1.
∵椭圆过点(5/2,-3/2)
∴(5/2)^2/(b^2+4)+(-3/2)^2/b^2=1
∴(25/4)/(b^2+4)+(9/4)/b^2=1
∴25/(b^2+4)+9/b^2=4
∴25b^2+9(b^2+4)=4b^2(b^2+4)
∴25b^2+9b^2+36=4(b^2)^2+16b^2
∴4(b^2)^2-18b^2-36=0
∴2(b^2)^2-9b^2-18=0
∴(b^2-6)(2b^2+3)=0
∵b^2>0
∴2b^2+3>0
∴b^2-6=0
∴b^2=6
∴a^2=b^2+4=10
∴椭圆的标准方程是x^2/10+y^2/6=1.
设椭圆方程为
x^2/a^2+y^2/b^2=1
把点P(5/2,-3/2)代入得
b^2*25/4+a^2*9/4=a^2b^2 (1)
两个焦点分别是F1(-2,0),F2(2,0),
a^2-b^2=4 (2)
联立方程组
这个方程太难解了。
很简单,根据椭圆的定义求出该点到两焦点的距离之和2a,为2倍的根号下10,再求2c为4,再求b为根号下6,于是得到椭圆的标准方程为10分之x平方加6分之y平方等于1.