平面内与两定点的连线的斜率之积是常数k的动点的轨迹是椭圆这句话怎证啊
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 20:39:44
平面内与两定点的连线的斜率之积是常数k的动点的轨迹是椭圆这句话怎证啊
平面内与两定点的连线的斜率之积是常数k的动点的轨迹是椭圆
这句话怎证啊
平面内与两定点的连线的斜率之积是常数k的动点的轨迹是椭圆这句话怎证啊
设两个定点的坐标为(-c,0) (c,0),动点P(x,y)
k1=y/(x+c) k2=y/(x-c)
因为k1*k2=k(定值)
所以(y^2)/(x^2-c^2)=k
即(x^2)/(c^2)+(y^2)/(-kc^2)=1
若k0,轨迹为双曲线
平面内与两定点的连线的斜率之积是常数k的动点的轨迹是椭圆这句话怎证啊
平面内与两定点A1(-2,0),A2(2,0)连线的斜率之积等于非零
平面内与两定点A1(-a,0),A2(a,0) (a>0)连线斜率之积等于非零常数m的点的轨迹平面内与两定点A1(-a,0),A2(a,0)(a>0)连线的斜率之积等于非零常数m的点的轨迹,加上A1,A2两点所成的曲线C可以是圆,椭
平面内P(X,Y)与两定点A1(-a,0)、A2(a,0)(a>0)连线的斜率之积等于非零常数m,求P点的轨迹.
2011湖北理科数学高考第20题第2小题的详细答案平面内与两定点A1(-a,0),A2(a,0)(a>0)连线的斜率之积等于非零常数m的点的轨迹,加上A1,A2两点所成的曲线C可以是圆,椭圆或双曲线.题目就这样子,第一
平面内与两定点A1(-2,0)A2(2,0)连鲜的斜率之积等于非零常数m的点的轨迹,加上A1A2两点所成的曲线C可以是圆
已知动点P(X,Y)与两定点M(-1,0)N(1,0)连线的斜率之积等于常数r.求动点P的轨迹方程.
已知动点P(x,y)与两定点M(-1,0)N(1,0)连线的斜率之积等于常数
已知动点M与两定点F1(-a,0)F2(a,0)(a大于0,为常数)的连线的斜率之积为常数k,若点M的轨迹是离心率为根为根号3的双曲线,则k值.
平面内与两定点A1(-a,0),A2(a,0)(a>0)连线的斜率之积等于非零常数m的点的轨迹,加上A1、A2两点所成的曲线C(1)求曲线C的方程(2)根据m的不同取值,讨论曲线C的形状和位置
点P与两定点F1(-a,0).F2(a,0)(a>0)的连线的斜率乘积为常数k,当点P的轨迹是离心率为2的双曲线是,K的值为
动点P与两个定点F1(-1,0,),F2(1,0)连线的斜率之积等于常数k(K≥0),求动点P的轨迹方程,并指出轨迹的形状
平面内与两定点A1(-2,0)A2(2,0)连鲜的斜率之积等于非零常数m的点的轨迹,加上A1A2两点所成的曲线C.当m= -3/4 ,过点F(1,0)且斜率为K(K不等于0)的直线L1交曲线C于MN两点,若弦长MN的中点P,过点P做
平面内与两定点A1(-2,0)A2(2,0)连鲜的斜率之积等于非零常数m的点的轨迹,加上A1A2两点所成的曲线C可以是圆,椭圆或双曲线.求C的方程,并谈论C的形状于m值的关系
已知动点 与平面上两定点 连线的斜率的积为定值 .(1)试求动点 的轨迹方程 ;
点M与两个定点F1:(-A,0) F2:(A,0)连线的斜率之积为常数λ,当点M的轨迹是椭圆时,实数λ的取值范围是A大于0
已知动点皮(x,y)与两个定点M(-1,0),N(1,0)的连线的斜率之积等于常数λ1、求动点P的轨迹C方程;2、试根据λ的取值情况讨论轨迹C的形状;3、当λ=2时,对于平面上的定点E(-根号3,0),F
已知动点P(X,Y)与两定点M(-1,0)N(1,0)连线的斜率之积等于常数-2.过定点F(0,1)的直线L与P的轨迹方程交于A,B两点,求三角形OAB面积的最大值