a,b,c是不全相等的正数,求证:lg(a+b)/2 -lg(b+c)/2 +lg(c+a)/2 >lga +lgb +lgc
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 19:33:43
a,b,c是不全相等的正数,求证:lg(a+b)/2 -lg(b+c)/2 +lg(c+a)/2 >lga +lgb +lgc
a,b,c是不全相等的正数,求证:lg(a+b)/2 -lg(b+c)/2 +lg(c+a)/2 >lga +lgb +lgc
a,b,c是不全相等的正数,求证:lg(a+b)/2 -lg(b+c)/2 +lg(c+a)/2 >lga +lgb +lgc
lg(a+b)/2 -lg(b+c)/2 +lg(c+a)/2 >lga +lgb +lgc?
应该是lg(a+b)/2 +lg(b+c)/2 +lg(c+a)/2 >lga +lgb +lgc吧
lg(a+b)/2 +lg(b+c)/2 +lg(c+a)/2 >lga +lgb +lgc
lg(a+b)(b+c)(a+c)/8>lgabc
因为lg单调增加,所以
(a+b)(b+c)(a+c)/8>abc
(a+b)(b+c)(a+c)>8abc
证明上面这个结论,即可证到本题结论
因为
a+b>2√ab(a,b为不相等的正数)
b+c>2√bc(b,c为不相等的正数)
a+c>2√ac(a,c为不相等的正数)
三个式子相乘
(a+b)(b+c)(a+c)>2√ab*2√bc*2√ac=8abc
(a+b)(b+c)(a+c)>8abc
所以本题得证
若a,b,c,是不全相等的正数,求证:lg(a+b)/2+lg(b+c)/2+lg(c+a)/2>lga+lgb+lgc
已知a,b,c是不全相等的正数.求证:lg(a+b/2)+lg(b+c/2)+lg(a+c/2)>lga+lgb+lgc
若a、b、 c是不全相等的正数 求证lg(a+b)/2+lg(b+c)/2+lg(a+c)/2>lga+lgb+lgc
a,b,c是不全相等的正数,求证:lg(a+b)/2 -lg(b+c)/2 +lg(c+a)/2 >lga +lgb +lgc
已知是不全相等的正数.求证:lg((a+b)/2)+lg((b+c)/2)+lg((c+a)/2)>lga+lgb+lgc.
基本不等式应用的证明问题7若a b c是不全相等的正数,求证:lg((a+b)/2)+lg((b+c)/2)+lg((c+a)/2)>lga+lgb+lgc
证:lg((a b)/2) lg((b c)/2) lg((c a)/2〉lga lgb lgca,b,c是不全相等的正数
已知a,b,c都是正数,且不全相等,求证:lg(a+b)/2+lg(b+c)/2+lg(a+c)/2>lga+lgb+lgc
已知a,b,c是不全相等的正数,求证:lga+lgb+lgc
设a,b,c是不全相等的正数,求证(a+b)(b+c)(c+a)>8abc
已知a,b,c是不全相等的正数求证(a+b)(b+c)(c+a)>8abc
已知abc是三个不全相等的正数,求证:(b+c)/a+(a+c)/b+(a+b)/c
a,b,c是不全相等的正数,求证ab/c+bc/a+ac/b>a+b+c
a,b,c是不全相等的正数,求证(a^2+1)(b^2+1)(c^2+1)>8abc
设a,b,c是不全相等的正数,求证:a+b+c>√ab+√bc+√ac
a,b,c是不全相等的正数,且a+b+c=1,求证:ab+bc+ca
高一数学不等式证明题(基本不等式)已知a、b、c为不全相等的正数,求证:lga+lgb+lgc<lg9[(a+b)/2]+lg[(b+c)/2]+lg[(c+a)/2]
已知a,b,c是不全相等的正数,求证(b+c-a)/a + (c+a-b)/b + (a+b-c)/c >3